Skip to contents

A Weibull random walk is a stochastic process in which each step is drawn from the Weibull distribution, a flexible distribution commonly used to model lifetimes, reliability, and extreme values. This function allows for the simulation of multiple independent random walks in one, two, or three dimensions, with user control over the number of walks, steps, and the shape and scale parameters of the Weibull distribution. Sampling options allow for further customization, including the ability to sample a proportion of steps and to sample with or without replacement. The resulting data frame includes cumulative statistics for each walk, making it suitable for simulation studies and visualization.

Usage

random_weibull_walk(
  .num_walks = 25,
  .n = 100,
  .shape = 1,
  .scale = 1,
  .initial_value = 0,
  .samp = TRUE,
  .replace = TRUE,
  .sample_size = 0.8,
  .dimensions = 1
)

Arguments

.num_walks

Integer. Number of walks to generate. Default is 25.

.n

Integer. Number of steps in each walk. Default is 100.

.shape

Numeric. Shape parameter of the Weibull distribution. Default is 1.

.scale

Numeric. Scale parameter of the Weibull distribution. Default is 1.

.initial_value

Numeric. Starting value of the walk. Default is 0.

.samp

Logical. Whether to sample the steps. Default is TRUE.

.replace

Logical. Whether sampling is with replacement. Default is TRUE.

.sample_size

Numeric. Proportion of steps to sample (0-1). Default is 0.8.

.dimensions

Integer. Number of dimensions (1, 2, or 3). Default is 1.

Value

A data frame with the random walks and cumulative statistics as columns.

A tibble containing the generated random walks with columns depending on the number of dimensions:

  • walk_number: Factor representing the walk number.

  • step_number: Step index.

  • y: If .dimensions = 1, the value of the walk at each step.

  • x, y: If .dimensions = 2, the values of the walk in two dimensions.

  • x, y, z: If .dimensions = 3, the values of the walk in three dimensions.

The following are also returned based upon how many dimensions there are and could be any of x, y and or z:

  • cum_sum: Cumulative sum of dplyr::all_of(.dimensions).

  • cum_prod: Cumulative product of dplyr::all_of(.dimensions).

  • cum_min: Cumulative minimum of dplyr::all_of(.dimensions).

  • cum_max: Cumulative maximum of dplyr::all_of(.dimensions).

  • cum_mean: Cumulative mean of dplyr::all_of(.dimensions).

Details

The random_weibull_walk function generates multiple random walks in 1, 2, or 3 dimensions. Each walk is a sequence of steps where each step is a random draw from the Weibull distribution using stats::rweibull(). The user can specify the number of walks, the number of steps in each walk, and the parameters .shape and .scale for the Weibull distribution. The function also allows for sampling a proportion of the steps and optionally sampling with replacement.

Author

Steven P. Sanderson II, MPH

Examples

set.seed(123)
random_weibull_walk()
#> # A tibble: 2,000 × 8
#>    walk_number step_number      y cum_sum_y cum_prod_y cum_min_y cum_max_y
#>    <fct>             <int>  <dbl>     <dbl>      <dbl>     <dbl>     <dbl>
#>  1 1                     1 0.422      0.422          0    0.422      0.422
#>  2 1                     2 0.816      1.24           0    0.422      0.816
#>  3 1                     3 0.367      1.61           0    0.367      0.816
#>  4 1                     4 0.121      1.73           0    0.121      0.816
#>  5 1                     5 0.103      1.83           0    0.103      0.816
#>  6 1                     6 0.422      2.25           0    0.103      0.816
#>  7 1                     7 0.0152     2.27           0    0.0152     0.816
#>  8 1                     8 3.70       5.97           0    0.0152     3.70 
#>  9 1                     9 1.46       7.43           0    0.0152     3.70 
#> 10 1                    10 1.92       9.35           0    0.0152     3.70 
#> # ℹ 1,990 more rows
#> # ℹ 1 more variable: cum_mean_y <dbl>

set.seed(123)
random_weibull_walk(.dimensions = 3) |>
   head() |>
   t()
#>             [,1]         [,2]         [,3]         [,4]         [,5]        
#> walk_number "1"          "1"          "1"          "1"          "1"         
#> step_number "1"          "2"          "3"          "4"          "5"         
#> x           "0.4220431"  "0.8159928"  "0.3670090"  "0.1205091"  "0.1028093" 
#> y           "2.84802700" "0.61234101" "0.08808446" "0.48069865" "2.90718840"
#> z           "1.02706319" "0.55112373" "7.67272276" "1.53631719" "0.05063955"
#> cum_sum_x   "0.4220431"  "1.2380359"  "1.6050449"  "1.7255540"  "1.8283632" 
#> cum_sum_y   "2.848027"   "3.460368"   "3.548452"   "4.029151"   "6.936340"  
#> cum_sum_z   " 1.027063"  " 1.578187"  " 9.250910"  "10.787227"  "10.837866" 
#> cum_prod_x  "0"          "0"          "0"          "0"          "0"         
#> cum_prod_y  "0"          "0"          "0"          "0"          "0"         
#> cum_prod_z  "0"          "0"          "0"          "0"          "0"         
#> cum_min_x   "0.4220431"  "0.4220431"  "0.3670090"  "0.1205091"  "0.1028093" 
#> cum_min_y   "2.84802700" "0.61234101" "0.08808446" "0.08808446" "0.08808446"
#> cum_min_z   "1.02706319" "0.55112373" "0.55112373" "0.55112373" "0.05063955"
#> cum_max_x   "0.4220431"  "0.8159928"  "0.8159928"  "0.8159928"  "0.8159928" 
#> cum_max_y   "2.848027"   "2.848027"   "2.848027"   "2.848027"   "2.907188"  
#> cum_max_z   "1.027063"   "1.027063"   "7.672723"   "7.672723"   "7.672723"  
#> cum_mean_x  "0.4220431"  "0.6190180"  "0.5350150"  "0.4313885"  "0.3656726" 
#> cum_mean_y  "2.848027"   "1.730184"   "1.182817"   "1.007288"   "1.387268"  
#> cum_mean_z  "1.0270632"  "0.7890935"  "3.0836366"  "2.6968067"  "2.1675733" 
#>             [,6]        
#> walk_number "1"         
#> step_number "6"         
#> x           "0.4220431" 
#> y           "0.72972278"
#> z           "0.20846750"
#> cum_sum_x   "2.2504063" 
#> cum_sum_y   "7.666062"  
#> cum_sum_z   "11.046334" 
#> cum_prod_x  "0"         
#> cum_prod_y  "0"         
#> cum_prod_z  "0"         
#> cum_min_x   "0.1028093" 
#> cum_min_y   "0.08808446"
#> cum_min_z   "0.05063955"
#> cum_max_x   "0.8159928" 
#> cum_max_y   "2.907188"  
#> cum_max_z   "7.672723"  
#> cum_mean_x  "0.3750677" 
#> cum_mean_y  "1.277677"  
#> cum_mean_z  "1.8410557"