
Internal Model Builders for Regression
Source:R/internals-model-builders-regression.R
internal_model_builders_regression.RdInternal functions that build pre-configured parsnip model specifications for regression models. Each function returns a parsnip model specification with the mode and engine pre-set.
Usage
lm_regression_linear_reg()
brulee_regression_linear_reg()
gee_regression_linear_reg()
glm_regression_linear_reg()
glmer_regression_linear_reg()
glmnet_regression_linear_reg()
gls_regression_linear_reg()
lme_regression_linear_reg()
lmer_regression_linear_reg()
stan_regression_linear_reg()
stan_glmer_regression_linear_reg()
cubist_regression_cubist_rules()
glm_regression_poisson_reg()
gee_regression_poisson_reg()
glmer_regression_poisson_reg()
glmnet_regression_poisson_reg()
hurdle_regression_poisson_reg()
stan_regression_poisson_reg()
stan_glmer_regression_poisson_reg()
zeroinfl_regression_poisson_reg()
earth_regression_bag_mars()
earth_regression_mars()
rpart_regression_bag_tree()
rpart_regression_decision_tree()
partykit_regression_decision_tree()
dbarts_regression_bart()
xgboost_regression_boost_tree()
lightgbm_regression_boost_tree()
mgcv_regression_gen_additive_mod()
nnet_regression_mlp()
brulee_regression_mlp()
kknn_regression_nearest_neighbor()
ranger_regression_rand_forest()
randomforest_regression_rand_forest()
xrf_regression_rule_fit()
liblinear_regression_svm_linear()
kernlab_regression_svm_linear()
kernlab_regression_svm_poly()
kernlab_regression_svm_rbf()Details
These functions are used internally by internal_make_spec_tbl() to create
model specifications. Each function follows the naming pattern:
{engine}_{mode}_{parsnip_function}()