healthyverse_tsa

Time Series Analysis, Modeling and Forecasting of the Healthyverse

Packages Steven P. Sanderson II, MPH - Date: 2026-01-29

Introduction

This analysis follows a Nested Modeltime Workflow from modeltime along with using the NNS package. I use this to monitor the downloads of all of my packages:

Get Data

glimpse(downloads_tbl)
Rows: 166,986
Columns: 11
$ date      <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
$ time      <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
$ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
$ size      <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
$ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
$ r_arch    <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
$ r_os      <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
$ package   <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
$ version   <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
$ country   <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
$ ip_id     <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…

The last day in the data set is 2026-01-27 23:29:15, the file was birthed on: 2025-10-31 10:47:59.603742, and at report knit time is 2120.69 hours old. Happy analyzing!

Now that we have our data lets take a look at it using the skimr package.

skim(downloads_tbl)
   
Name downloads_tbl
Number of rows 166986
Number of columns 11
_______________________  
Column type frequency:  
character 6
Date 1
numeric 2
POSIXct 1
Timespan 1
________________________  
Group variables None

Data summary

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
r_version 123015 0.26 5 7 0 50 0
r_arch 123015 0.26 1 7 0 6 0
r_os 123015 0.26 7 19 0 24 0
package 0 1.00 7 13 0 8 0
version 0 1.00 5 17 0 63 0
country 15636 0.91 2 2 0 166 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-11-23 2026-01-27 2023-11-30 1885

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
size 0 1 1124808.46 1484738.57 355 35495 313210 2347811 5677952 ▇▁▂▁▁
ip_id 0 1 11207.45 21831.19 1 223 2793 11729 299146 ▇▁▁▁▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
date_time 0 1 2020-11-23 09:00:41 2026-01-27 23:29:15 2023-11-30 02:14:37 105656

Variable type: Timespan

skim_variable n_missing complete_rate min max median n_unique
time 0 1 0 59 52 60

We can see that the following columns are missing a lot of data and for us are most likely not useful anyways, so we will drop them c(r_version, r_arch, r_os)

Plots

Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Now lets take a look at some time series decomposition graphs.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Seasonal Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

ACF and PACF Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Feature Engineering

Now that we have our basic data and a shot of what it looks like, let’s add some features to our data which can be very helpful in modeling. Lets start by making a tibble that is aggregated by the day and package, as we are going to be interested in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

Call:
stats::lm(formula = .formula, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-148.51  -37.04  -11.51   27.12  823.78 

Coefficients:
                                                     Estimate Std. Error
(Intercept)                                        -1.648e+02  5.758e+01
date                                                1.028e-02  3.048e-03
lag(value, 1)                                       1.028e-01  2.289e-02
lag(value, 7)                                       9.103e-02  2.370e-02
lag(value, 14)                                      7.741e-02  2.365e-02
lag(value, 21)                                      8.329e-02  2.372e-02
lag(value, 28)                                      6.242e-02  2.365e-02
lag(value, 35)                                      5.097e-02  2.365e-02
lag(value, 42)                                      6.777e-02  2.376e-02
lag(value, 49)                                      6.724e-02  2.369e-02
month(date, label = TRUE).L                        -8.960e+00  4.845e+00
month(date, label = TRUE).Q                        -9.597e-01  4.757e+00
month(date, label = TRUE).C                        -1.458e+01  4.803e+00
month(date, label = TRUE)^4                        -7.292e+00  4.859e+00
month(date, label = TRUE)^5                        -5.862e+00  4.851e+00
month(date, label = TRUE)^6                         6.876e-01  4.896e+00
month(date, label = TRUE)^7                        -4.111e+00  4.844e+00
month(date, label = TRUE)^8                        -4.250e+00  4.823e+00
month(date, label = TRUE)^9                         2.882e+00  4.837e+00
month(date, label = TRUE)^10                        9.234e-01  4.853e+00
month(date, label = TRUE)^11                       -4.123e+00  4.840e+00
fourier_vec(date, type = "sin", K = 1, period = 7) -1.101e+01  2.176e+00
fourier_vec(date, type = "cos", K = 1, period = 7)  7.265e+00  2.250e+00
                                                   t value Pr(>|t|)    
(Intercept)                                         -2.863 0.004245 ** 
date                                                 3.372 0.000763 ***
lag(value, 1)                                        4.489 7.59e-06 ***
lag(value, 7)                                        3.842 0.000126 ***
lag(value, 14)                                       3.274 0.001082 ** 
lag(value, 21)                                       3.511 0.000458 ***
lag(value, 28)                                       2.639 0.008386 ** 
lag(value, 35)                                       2.155 0.031319 *  
lag(value, 42)                                       2.852 0.004396 ** 
lag(value, 49)                                       2.839 0.004580 ** 
month(date, label = TRUE).L                         -1.849 0.064562 .  
month(date, label = TRUE).Q                         -0.202 0.840156    
month(date, label = TRUE).C                         -3.035 0.002441 ** 
month(date, label = TRUE)^4                         -1.501 0.133599    
month(date, label = TRUE)^5                         -1.208 0.227034    
month(date, label = TRUE)^6                          0.140 0.888316    
month(date, label = TRUE)^7                         -0.849 0.396219    
month(date, label = TRUE)^8                         -0.881 0.378286    
month(date, label = TRUE)^9                          0.596 0.551333    
month(date, label = TRUE)^10                         0.190 0.849121    
month(date, label = TRUE)^11                        -0.852 0.394392    
fourier_vec(date, type = "sin", K = 1, period = 7)  -5.059 4.65e-07 ***
fourier_vec(date, type = "cos", K = 1, period = 7)   3.229 0.001263 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.37 on 1813 degrees of freedom
  (49 observations deleted due to missingness)
Multiple R-squared:  0.2225,    Adjusted R-squared:  0.2131 
F-statistic: 23.58 on 22 and 1813 DF,  p-value: < 2.2e-16

NNS Forecasting

This is something I have been wanting to try for a while. The NNS package is a great package for forecasting time series data.

NNS GitHub

library(NNS)

data_list <- base_data |>
    select(package, value) |>
    group_split(package)

data_list |>
    imap(
        \(x, idx) {
            obj <- x
            x <- obj |> pull(value) |> tail(7*52)
            train_set_size <- length(x) - 56
            pkg <- obj |> pluck(1) |> unique()
#            sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
            seas <- t(
                sapply(
                    1:25, 
                    function(i) c(
                        i,
                        sqrt(
                            mean((
                                NNS.ARMA(x, 
                                         h = 28, 
                                         training.set = train_set_size, 
                                         method = "lin", 
                                         seasonal.factor = i, 
                                         plot=FALSE
                                         ) - tail(x, 28)) ^ 2)))
                    )
                )
            colnames(seas) <- c("Period", "RMSE")
            sf <- seas[which.min(seas[, 2]), 1]
            
            cat(paste0("Package: ", pkg, "\n"))
            NNS.ARMA.optim(
                variable = x,
                h = 28,
                training.set = train_set_size,
                #seasonal.factor = seq(12, 60, 7),
                seasonal.factor = sf,
                pred.int = 0.95,
                plot = TRUE
            )
            title(
                sub = paste0("\n",
                             "Package: ", pkg, " - NNS Optimization")
            )
        }
    )
Package: healthyR
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 5.05681176423358"
[1] "BEST method = 'lin' PATH MEMBER = c( 25 )"
[1] "BEST lin OBJECTIVE FUNCTION = 5.05681176423358"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 6.12043640118858"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 25 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 6.12043640118858"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 25 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 4.70439047238501"
[1] "BEST method = 'both' PATH MEMBER = c( 25 )"
[1] "BEST both OBJECTIVE FUNCTION = 4.70439047238501"

Package: healthyR.ai
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 101.983050461472"
[1] "BEST method = 'lin' PATH MEMBER = c( 3 )"
[1] "BEST lin OBJECTIVE FUNCTION = 101.983050461472"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 10.3903729485468"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 3 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 10.3903729485468"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 9.91729626355765"
[1] "BEST method = 'both' PATH MEMBER = c( 3 )"
[1] "BEST both OBJECTIVE FUNCTION = 9.91729626355765"

Package: healthyR.data
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 20 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 12.7508897683222"
[1] "BEST method = 'lin' PATH MEMBER = c( 20 )"
[1] "BEST lin OBJECTIVE FUNCTION = 12.7508897683222"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 20 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 5.89455872851956"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 20 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 5.89455872851956"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 20 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 7.06643722643935"
[1] "BEST method = 'both' PATH MEMBER = c( 20 )"
[1] "BEST both OBJECTIVE FUNCTION = 7.06643722643935"

Package: healthyR.ts
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 26.6078901632946"
[1] "BEST method = 'lin' PATH MEMBER = c( 11 )"
[1] "BEST lin OBJECTIVE FUNCTION = 26.6078901632946"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 11.5754263945389"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 11 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 11.5754263945389"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 11 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 17.5896000127571"
[1] "BEST method = 'both' PATH MEMBER = c( 11 )"
[1] "BEST both OBJECTIVE FUNCTION = 17.5896000127571"

Package: healthyverse
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 61.9756592532723"
[1] "BEST method = 'lin' PATH MEMBER = c( 3 )"
[1] "BEST lin OBJECTIVE FUNCTION = 61.9756592532723"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 15.3999828610111"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 3 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 15.3999828610111"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 33.9948068539943"
[1] "BEST method = 'both' PATH MEMBER = c( 3 )"
[1] "BEST both OBJECTIVE FUNCTION = 33.9948068539943"

Package: RandomWalker
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 16 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 14.9179587262231"
[1] "BEST method = 'lin' PATH MEMBER = c( 16 )"
[1] "BEST lin OBJECTIVE FUNCTION = 14.9179587262231"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 16 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.60571522181754"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 16 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 4.60571522181754"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 16 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 6.2682288509071"
[1] "BEST method = 'both' PATH MEMBER = c( 16 )"
[1] "BEST both OBJECTIVE FUNCTION = 6.2682288509071"

Package: tidyAML
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 8 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 11.8387988264058"
[1] "BEST method = 'lin' PATH MEMBER = c( 8 )"
[1] "BEST lin OBJECTIVE FUNCTION = 11.8387988264058"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 8 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 11.5399288115919"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 8 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 11.5399288115919"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 8 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 10.5275570095888"
[1] "BEST method = 'both' PATH MEMBER = c( 8 )"
[1] "BEST both OBJECTIVE FUNCTION = 10.5275570095888"

Package: TidyDensity
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 16 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 19.3847801917076"
[1] "BEST method = 'lin' PATH MEMBER = c( 16 )"
[1] "BEST lin OBJECTIVE FUNCTION = 19.3847801917076"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 16 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 3.42317707972579"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 16 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 3.42317707972579"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 16 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 5.81528551130106"
[1] "BEST method = 'both' PATH MEMBER = c( 16 )"
[1] "BEST both OBJECTIVE FUNCTION = 5.81528551130106"

[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
NULL

[[6]]
NULL

[[7]]
NULL

[[8]]
NULL

Pre-Processing

Now we are going to do some basic pre-processing.

data_padded_tbl <- base_data %>%
  pad_by_time(
    .date_var  = date,
    .pad_value = 0
  )

# Get log interval and standardization parameters
log_params  <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset      <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
  # Get log interval transform
  mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean   <- std_params$mean
std_sd     <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
  group_by(package) %>%
  # get standardization
  mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
  tk_augment_fourier(
    .date_var = date,
    .periods  = c(7, 14, 30, 90, 180),
    .K        = 2
  ) %>%
  tk_augment_timeseries_signature(
    .date_var = date
  ) %>%
  ungroup() %>%
  select(-c(value, -year.iso))

Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.

To do this we will use the nest_timeseries and split_nested_timeseries functions to create a nested tibble.

horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%

    # 0. Filter out column where package is NA
    filter(!is.na(package)) %>%
    
    # 1. Extending: We'll predict n days into the future.
    extend_timeseries(
        .id_var        = package,
        .date_var      = date,
        .length_future = horizon
    ) %>%
    
    # 2. Nesting: We'll group by id, and create a future dataset
    #    that forecasts n days of extended data and
    #    an actual dataset that contains n*2 days
    nest_timeseries(
        .id_var        = package,
        .length_future = horizon
        #.length_actual = horizon*2
    ) %>%
    
   # 3. Splitting: We'll take the actual data and create splits
   #    for accuracy and confidence interval estimation of n das (test)
   #    and the rest is training data
    split_nested_timeseries(
        .length_test = horizon
    )

nested_data_tbl
# A tibble: 8 × 4
  package       .actual_data          .future_data       .splits          
  <fct>         <list>                <list>             <list>           
1 healthyR.data <tibble [1,875 × 50]> <tibble [28 × 50]> <split [1847|28]>
2 healthyR      <tibble [1,868 × 50]> <tibble [28 × 50]> <split [1840|28]>
3 healthyR.ts   <tibble [1,804 × 50]> <tibble [28 × 50]> <split [1776|28]>
4 healthyverse  <tibble [1,768 × 50]> <tibble [28 × 50]> <split [1740|28]>
5 healthyR.ai   <tibble [1,610 × 50]> <tibble [28 × 50]> <split [1582|28]>
6 TidyDensity   <tibble [1,461 × 50]> <tibble [28 × 50]> <split [1433|28]>
7 tidyAML       <tibble [1,068 × 50]> <tibble [28 × 50]> <split [1040|28]>
8 RandomWalker  <tibble [491 × 50]>   <tibble [28 × 50]> <split [463|28]> 

Now it is time to make some recipes and models using the modeltime workflow.

Modeltime Workflow

Recipe Object

recipe_base <- recipe(
  value_trans ~ .
  , data = extract_nested_test_split(nested_data_tbl)
  )

recipe_base

recipe_date <- recipe(
  value_trans ~ date
  , data = extract_nested_test_split(nested_data_tbl)
  )

Models

# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
  set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
  mode              = "regression"
  , seasonal_period = "auto"
) %>%
  set_engine("nnetar")

wflw_nnetar <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
  set_engine("lm")

wflw_lm <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_mars <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_mars)

Nested Modeltime Tables

nested_modeltime_tbl <- modeltime_nested_fit(
  # Nested Data
  nested_data = nested_data_tbl,
   control = control_nested_fit(
     verbose = TRUE,
     allow_par = FALSE
   ),
  # Add workflows
  wflw_auto_arima,
  wflw_lm,
  wflw_mars,
  wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]

Model Accuracy

nested_modeltime_tbl %>%
  extract_nested_test_accuracy() %>%
  filter(!is.na(package)) %>%
  knitr::kable()
package .model_id .model_desc .type mae mape mase smape rmse rsq
healthyR.data 1 ARIMA Test 0.7861257 148.51882 0.7325263 148.32190 0.9765162 0.0347229
healthyR.data 2 LM Test 0.6707149 122.03877 0.6249844 152.76197 0.8591373 0.0828554
healthyR.data 3 EARTH Test 0.7128457 140.62649 0.6642426 138.87775 0.9087615 0.0201941
healthyR.data 4 NNAR Test 0.7714193 177.33233 0.7188226 153.52162 0.9453784 0.0019735
healthyR 1 ARIMA Test 0.6969470 444.10659 0.5719717 119.55143 0.9332107 0.0306813
healthyR 2 LM Test 0.7253123 498.22767 0.5952506 125.46270 0.9470043 0.0775172
healthyR 3 EARTH Test 0.6998876 616.60440 0.5743850 109.35748 0.9368951 0.0006382
healthyR 4 NNAR Test 0.7558256 540.09648 0.6202923 128.67513 0.9898973 0.0450697
healthyR.ts 1 ARIMA Test 1.0993203 100.60224 0.8326380 162.45130 1.3690996 0.0070127
healthyR.ts 2 LM Test 1.1915530 144.62787 0.9024962 151.39576 1.4899607 0.0445971
healthyR.ts 3 EARTH Test 1.0103668 275.44845 0.7652636 112.56529 1.2829877 0.1413370
healthyR.ts 4 NNAR Test 1.2171139 171.73169 0.9218563 147.75712 1.5526050 0.1485170
healthyverse 1 ARIMA Test 1.1924345 84.36053 1.4340005 145.61504 1.3771293 0.0050349
healthyverse 2 LM Test 1.1184336 92.48080 1.3450084 128.48236 1.2851467 0.0731136
healthyverse 3 EARTH Test 2.7519753 238.18463 3.3094765 191.49688 3.0097494 0.1297871
healthyverse 4 NNAR Test 1.1991143 98.25826 1.4420335 143.35471 1.3670193 0.0806083
healthyR.ai 1 ARIMA Test 0.7002754 87.59895 0.8389962 148.64846 0.8035017 0.1250908
healthyR.ai 2 LM Test 0.7826767 130.76340 0.9377207 146.60331 0.9133871 0.0858783
healthyR.ai 3 EARTH Test 1.7216247 517.51167 2.0626693 115.10396 1.9141738 0.0268126
healthyR.ai 4 NNAR Test 0.7667847 137.70574 0.9186806 139.25446 0.9020992 0.0324612
TidyDensity 1 ARIMA Test 1.0199895 122.09842 0.6090573 167.28801 1.2569990 0.0000543
TidyDensity 2 LM Test 1.1053368 312.53278 0.6600199 162.83046 1.2041230 0.0459268
TidyDensity 3 EARTH Test 1.0092686 140.58837 0.6026556 137.41413 1.3054063 0.0043465
TidyDensity 4 NNAR Test 1.0629201 293.91149 0.6346920 160.18976 1.1954292 0.0481894
tidyAML 1 ARIMA Test 0.6202493 108.98397 0.6070450 84.48303 0.8141327 0.1091012
tidyAML 2 LM Test 1.0905811 167.31951 1.0673641 156.56941 1.3428815 0.0242122
tidyAML 3 EARTH Test 2.7924093 906.03109 2.7329626 133.53045 3.1029415 0.0396336
tidyAML 4 NNAR Test 0.8032429 169.67553 0.7861429 140.45166 1.0598661 0.0180034
RandomWalker 1 ARIMA Test 1.0809094 120.73027 0.6529512 185.95200 1.1759656 0.0907719
RandomWalker 2 LM Test 1.1807757 217.39646 0.7132779 168.27049 1.2366247 0.0214180
RandomWalker 3 EARTH Test 0.9472123 103.43790 0.5721880 147.73908 1.1311154 0.0007775
RandomWalker 4 NNAR Test 1.2054573 205.14477 0.7281875 177.03437 1.2612058 0.0378941

Plot Models

nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show  = FALSE,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  facet_wrap(~ package, nrow = 3) +
  theme(legend.position = "bottom")

Best Model

best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
  modeltime_nested_select_best(
    metric = "rmse",
    minimize = TRUE,
    filter_test_forecasts = TRUE
  )

best_nested_modeltime_tbl %>%
  extract_nested_best_model_report()
# Nested Modeltime Table
  

# A tibble: 8 × 10
  package      .model_id .model_desc .type   mae  mape  mase smape  rmse     rsq
  <fct>            <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
1 healthyR.da…         2 LM          Test  0.671 122.  0.625 153.  0.859 8.29e-2
2 healthyR             1 ARIMA       Test  0.697 444.  0.572 120.  0.933 3.07e-2
3 healthyR.ts          3 EARTH       Test  1.01  275.  0.765 113.  1.28  1.41e-1
4 healthyverse         2 LM          Test  1.12   92.5 1.35  128.  1.29  7.31e-2
5 healthyR.ai          1 ARIMA       Test  0.700  87.6 0.839 149.  0.804 1.25e-1
6 TidyDensity          4 NNAR        Test  1.06  294.  0.635 160.  1.20  4.82e-2
7 tidyAML              1 ARIMA       Test  0.620 109.  0.607  84.5 0.814 1.09e-1
8 RandomWalker         3 EARTH       Test  0.947 103.  0.572 148.  1.13  7.77e-4
best_nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  #filter(!is.na(.model_id)) %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")

Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
    modeltime_nested_refit(
        control = control_nested_refit(verbose = TRUE)
    )
nested_modeltime_refit_tbl
# Nested Modeltime Table
  

# A tibble: 8 × 5
  package       .actual_data .future_data .splits           .modeltime_tables 
  <fct>         <list>       <list>       <list>            <list>            
1 healthyR.data <tibble>     <tibble>     <split [1847|28]> <mdl_tm_t [1 × 5]>
2 healthyR      <tibble>     <tibble>     <split [1840|28]> <mdl_tm_t [1 × 5]>
3 healthyR.ts   <tibble>     <tibble>     <split [1776|28]> <mdl_tm_t [1 × 5]>
4 healthyverse  <tibble>     <tibble>     <split [1740|28]> <mdl_tm_t [1 × 5]>
5 healthyR.ai   <tibble>     <tibble>     <split [1582|28]> <mdl_tm_t [1 × 5]>
6 TidyDensity   <tibble>     <tibble>     <split [1433|28]> <mdl_tm_t [1 × 5]>
7 tidyAML       <tibble>     <tibble>     <split [1040|28]> <mdl_tm_t [1 × 5]>
8 RandomWalker  <tibble>     <tibble>     <split [463|28]>  <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
  extract_nested_future_forecast() %>%
  group_by(package) %>%
  mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
    x    = .,
    mean = std_mean,
    sd   = std_sd
  )$standard_inverse_value)) %>%
  mutate(across(.value:.conf_hi, .fns = ~ liiv(
    x = .,
    limit_lower = limit_lower,
    limit_upper = limit_upper,
    offset      = offset
  )$rescaled_v)) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")