Time Series Analysis, Modeling and Forecasting of the Healthyverse Packages ================ Steven P. Sanderson II, MPH - Date: 16 September, 2025
This analysis follows a Nested Modeltime Workflow.
glimpse(downloads_tbl)
## Rows: 152,092
## Columns: 11
## $ date <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…
The last day in the data set is 2025-09-14 23:57:21, the file was birthed on: 2024-08-07 07:35:44.428716, and at report knit time is -9684.36 hours old. Happy analyzing!
Now that we have our data lets take a look at it using the skimr
package.
skim(downloads_tbl)
Name | downloads_tbl |
Number of rows | 152092 |
Number of columns | 11 |
_______________________ | |
Column type frequency: | |
character | 6 |
Date | 1 |
numeric | 2 |
POSIXct | 1 |
Timespan | 1 |
________________________ | |
Group variables | None |
Data summary
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
r_version | 110605 | 0.27 | 5 | 5 | 0 | 48 | 0 |
r_arch | 110605 | 0.27 | 3 | 7 | 0 | 5 | 0 |
r_os | 110605 | 0.27 | 7 | 15 | 0 | 23 | 0 |
package | 0 | 1.00 | 7 | 13 | 0 | 8 | 0 |
version | 0 | 1.00 | 5 | 17 | 0 | 62 | 0 |
country | 13291 | 0.91 | 2 | 2 | 0 | 165 | 0 |
Variable type: Date
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date | 0 | 1 | 2020-11-23 | 2025-09-14 | 2023-08-31 | 1750 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
size | 0 | 1 | 1129679.97 | 1502116.95 | 355 | 14734 | 307237 | 2365161 | 5677952 | ▇▁▂▁▁ |
ip_id | 0 | 1 | 11257.76 | 21611.49 | 1 | 258 | 3030 | 12089 | 299146 | ▇▁▁▁▁ |
Variable type: POSIXct
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
date_time | 0 | 1 | 2020-11-23 09:00:41 | 2025-09-14 23:57:21 | 2023-08-31 08:16:17 | 94697 |
Variable type: Timespan
skim_variable | n_missing | complete_rate | min | max | median | n_unique |
---|---|---|---|---|---|---|
time | 0 | 1 | 0 | 59 | 29 | 60 |
We can see that the following columns are missing a lot of data and for
us are most likely not useful anyways, so we will drop them
c(r_version, r_arch, r_os)
Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.
Now lets take a look at some time series decomposition graphs.
Now that we have our basic data and a shot of what it looks like, let’s
add some features to our data which can be very helpful in modeling.
Lets start by making a tibble
that is aggregated by the day and
package, as we are going to be interested in forecasting the next 4
weeks or 28 days for each package. First lets get our base data.
##
## Call:
## stats::lm(formula = .formula, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -146.75 -36.22 -10.89 26.68 817.44
##
## Coefficients:
## Estimate Std. Error
## (Intercept) -1.907e+02 6.276e+01
## date 1.159e-02 3.324e-03
## lag(value, 1) 1.096e-01 2.370e-02
## lag(value, 7) 9.030e-02 2.453e-02
## lag(value, 14) 8.247e-02 2.457e-02
## lag(value, 21) 6.301e-02 2.459e-02
## lag(value, 28) 7.069e-02 2.456e-02
## lag(value, 35) 7.303e-02 2.462e-02
## lag(value, 42) 5.911e-02 2.477e-02
## lag(value, 49) 6.304e-02 2.467e-02
## month(date, label = TRUE).L -9.141e+00 5.106e+00
## month(date, label = TRUE).Q 2.740e+00 4.993e+00
## month(date, label = TRUE).C -1.454e+01 5.067e+00
## month(date, label = TRUE)^4 -7.298e+00 5.074e+00
## month(date, label = TRUE)^5 -1.030e+01 5.029e+00
## month(date, label = TRUE)^6 -3.082e+00 5.097e+00
## month(date, label = TRUE)^7 -7.179e+00 4.996e+00
## month(date, label = TRUE)^8 -4.222e+00 4.979e+00
## month(date, label = TRUE)^9 4.157e+00 4.942e+00
## month(date, label = TRUE)^10 2.505e+00 4.884e+00
## month(date, label = TRUE)^11 -3.514e+00 4.816e+00
## fourier_vec(date, type = "sin", K = 1, period = 7) -1.141e+01 2.267e+00
## fourier_vec(date, type = "cos", K = 1, period = 7) 7.395e+00 2.375e+00
## t value Pr(>|t|)
## (Intercept) -3.039 0.002410 **
## date 3.487 0.000502 ***
## lag(value, 1) 4.624 4.05e-06 ***
## lag(value, 7) 3.681 0.000239 ***
## lag(value, 14) 3.356 0.000808 ***
## lag(value, 21) 2.562 0.010492 *
## lag(value, 28) 2.878 0.004055 **
## lag(value, 35) 2.967 0.003052 **
## lag(value, 42) 2.386 0.017142 *
## lag(value, 49) 2.555 0.010710 *
## month(date, label = TRUE).L -1.790 0.073573 .
## month(date, label = TRUE).Q 0.549 0.583265
## month(date, label = TRUE).C -2.870 0.004158 **
## month(date, label = TRUE)^4 -1.438 0.150482
## month(date, label = TRUE)^5 -2.048 0.040750 *
## month(date, label = TRUE)^6 -0.605 0.545515
## month(date, label = TRUE)^7 -1.437 0.150885
## month(date, label = TRUE)^8 -0.848 0.396590
## month(date, label = TRUE)^9 0.841 0.400372
## month(date, label = TRUE)^10 0.513 0.608036
## month(date, label = TRUE)^11 -0.730 0.465637
## fourier_vec(date, type = "sin", K = 1, period = 7) -5.034 5.31e-07 ***
## fourier_vec(date, type = "cos", K = 1, period = 7) 3.114 0.001878 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 58.87 on 1678 degrees of freedom
## (49 observations deleted due to missingness)
## Multiple R-squared: 0.2329, Adjusted R-squared: 0.2228
## F-statistic: 23.16 on 22 and 1678 DF, p-value: < 2.2e-16
This is something I have been wanting to try for a while. The NNS
package is a great package for forecasting time series data.
library(NNS)
data_list <- base_data |>
select(package, value) |>
group_split(package)
data_list |>
imap(
\(x, idx) {
obj <- x
x <- obj |> pull(value) |> tail(7*52)
train_set_size <- length(x) - 56
pkg <- obj |> pluck(1) |> unique()
# sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
seas <- t(
sapply(
1:25,
function(i) c(
i,
sqrt(
mean((
NNS.ARMA(x,
h = 28,
training.set = train_set_size,
method = "lin",
seasonal.factor = i,
plot=FALSE
) - tail(x, 28)) ^ 2)))
)
)
colnames(seas) <- c("Period", "RMSE")
sf <- seas[which.min(seas[, 2]), 1]
cat(paste0("Package: ", pkg, "\n"))
NNS.ARMA.optim(
variable = x,
h = 28,
training.set = train_set_size,
#seasonal.factor = seq(12, 60, 7),
seasonal.factor = sf,
pred.int = 0.95,
plot = TRUE
)
title(
sub = paste0("\n",
"Package: ", pkg, " - NNS Optimization")
)
}
)
## Package: healthyR
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 24 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 10.0059483517188"
## [1] "BEST method = 'lin' PATH MEMBER = c( 24 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 10.0059483517188"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 24 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 13.9667479211027"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 24 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 13.9667479211027"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 24 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 9.97073695933843"
## [1] "BEST method = 'both' PATH MEMBER = c( 24 )"
## [1] "BEST both OBJECTIVE FUNCTION = 9.97073695933843"
## Package: healthyR.ai
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 21 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 12.3176498742681"
## [1] "BEST method = 'lin' PATH MEMBER = c( 21 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 12.3176498742681"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 21 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 10.8159278041926"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 21 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 10.8159278041926"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 21 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 14.4748936965833"
## [1] "BEST method = 'both' PATH MEMBER = c( 21 )"
## [1] "BEST both OBJECTIVE FUNCTION = 14.4748936965833"
## Package: healthyR.data
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 13 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 8.13009787421926"
## [1] "BEST method = 'lin' PATH MEMBER = c( 13 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 8.13009787421926"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 13 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 12.1175135802178"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 13 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 12.1175135802178"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 13 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 11.8663677814522"
## [1] "BEST method = 'both' PATH MEMBER = c( 13 )"
## [1] "BEST both OBJECTIVE FUNCTION = 11.8663677814522"
## Package: healthyR.ts
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 11 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 12.4785279286624"
## [1] "BEST method = 'lin' PATH MEMBER = c( 11 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 12.4785279286624"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 11 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 6.36651036388458"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 11 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 6.36651036388458"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 11 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 11.7665216778965"
## [1] "BEST method = 'both' PATH MEMBER = c( 11 )"
## [1] "BEST both OBJECTIVE FUNCTION = 11.7665216778965"
## Package: healthyverse
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 7 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 13.379214573746"
## [1] "BEST method = 'lin' PATH MEMBER = c( 7 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 13.379214573746"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 7 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.88234438516529"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 7 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.88234438516529"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 7 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 6.90543876208729"
## [1] "BEST method = 'both' PATH MEMBER = c( 7 )"
## [1] "BEST both OBJECTIVE FUNCTION = 6.90543876208729"
## Package: RandomWalker
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 7 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 5.83949977673726"
## [1] "BEST method = 'lin' PATH MEMBER = c( 7 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 5.83949977673726"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 7 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 4.74223159327071"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 7 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 4.74223159327071"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 7 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 4.94638193381694"
## [1] "BEST method = 'both' PATH MEMBER = c( 7 )"
## [1] "BEST both OBJECTIVE FUNCTION = 4.94638193381694"
## Package: tidyAML
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 20 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 10.0622530577582"
## [1] "BEST method = 'lin' PATH MEMBER = c( 20 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 10.0622530577582"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 20 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 8.55011987547076"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 20 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 8.55011987547076"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 20 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 11.2802680888127"
## [1] "BEST method = 'both' PATH MEMBER = c( 20 )"
## [1] "BEST both OBJECTIVE FUNCTION = 11.2802680888127"
## Package: TidyDensity
## [1] "CURRNET METHOD: lin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'lin' , seasonal.factor = c( 13 ) ...)"
## [1] "CURRENT lin OBJECTIVE FUNCTION = 25.8561233018776"
## [1] "BEST method = 'lin' PATH MEMBER = c( 13 )"
## [1] "BEST lin OBJECTIVE FUNCTION = 25.8561233018776"
## [1] "CURRNET METHOD: nonlin"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'nonlin' , seasonal.factor = c( 13 ) ...)"
## [1] "CURRENT nonlin OBJECTIVE FUNCTION = 9.7368396683016"
## [1] "BEST method = 'nonlin' PATH MEMBER = c( 13 )"
## [1] "BEST nonlin OBJECTIVE FUNCTION = 9.7368396683016"
## [1] "CURRNET METHOD: both"
## [1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
## [1] "NNS.ARMA(... method = 'both' , seasonal.factor = c( 13 ) ...)"
## [1] "CURRENT both OBJECTIVE FUNCTION = 11.5089482784673"
## [1] "BEST method = 'both' PATH MEMBER = c( 13 )"
## [1] "BEST both OBJECTIVE FUNCTION = 11.5089482784673"
## [[1]]
## NULL
##
## [[2]]
## NULL
##
## [[3]]
## NULL
##
## [[4]]
## NULL
##
## [[5]]
## NULL
##
## [[6]]
## NULL
##
## [[7]]
## NULL
##
## [[8]]
## NULL
Now we are going to do some basic pre-processing.
data_padded_tbl <- base_data %>%
pad_by_time(
.date_var = date,
.pad_value = 0
)
# Get log interval and standardization parameters
log_params <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset <- log_params$offset
data_liv_tbl <- data_padded_tbl %>%
# Get log interval transform
mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)
# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean <- std_params$mean
std_sd <- std_params$sd
data_transformed_tbl <- data_liv_tbl %>%
# get standardization
mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
select(-value)
Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.
To do this we will use the nest_timeseries
and
split_nested_timeseries
functions to create a nested tibble
.
horizon <- 4*7
nested_data_tbl <- data_transformed_tbl %>%
# 1. Extending: We'll predict n days into the future.
extend_timeseries(
.id_var = package,
.date_var = date,
.length_future = horizon
) %>%
# 2. Nesting: We'll group by id, and create a future dataset
# that forecasts n days of extended data and
# an actual dataset that contains n*2 days
nest_timeseries(
.id_var = package,
.length_future = horizon
#.length_actual = horizon*2
) %>%
# 3. Splitting: We'll take the actual data and create splits
# for accuracy and confidence interval estimation of n das (test)
# and the rest is training data
split_nested_timeseries(
.length_test = horizon
)
nested_data_tbl
## # A tibble: 9 × 4
## package .actual_data .future_data .splits
## <fct> <list> <list> <list>
## 1 healthyR.data <tibble [1,742 × 2]> <tibble [28 × 2]> <split [1714|28]>
## 2 healthyR <tibble [1,733 × 2]> <tibble [28 × 2]> <split [1705|28]>
## 3 healthyR.ts <tibble [1,679 × 2]> <tibble [28 × 2]> <split [1651|28]>
## 4 healthyverse <tibble [1,650 × 2]> <tibble [28 × 2]> <split [1622|28]>
## 5 healthyR.ai <tibble [1,475 × 2]> <tibble [28 × 2]> <split [1447|28]>
## 6 TidyDensity <tibble [1,326 × 2]> <tibble [28 × 2]> <split [1298|28]>
## 7 tidyAML <tibble [933 × 2]> <tibble [28 × 2]> <split [905|28]>
## 8 RandomWalker <tibble [356 × 2]> <tibble [28 × 2]> <split [328|28]>
## 9 <NA> <tibble [7 × 2]> <tibble [28 × 2]> <split [0|7]>
Now it is time to make some recipes and models using the modeltime workflow.
recipe_base <- recipe(
value_trans ~ date
, data = extract_nested_test_split(nested_data_tbl)
)
recipe_base
recipe_date <- recipe_base %>%
step_mutate(date = as.numeric(date))
# Models ------------------------------------------------------------------
# Auto ARIMA --------------------------------------------------------------
model_spec_arima_no_boost <- arima_reg() %>%
set_engine(engine = "auto_arima")
wflw_auto_arima <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_arima_no_boost)
# NNETAR ------------------------------------------------------------------
model_spec_nnetar <- nnetar_reg(
mode = "regression"
, seasonal_period = "auto"
) %>%
set_engine("nnetar")
wflw_nnetar <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_nnetar)
# TSLM --------------------------------------------------------------------
model_spec_lm <- linear_reg() %>%
set_engine("lm")
wflw_lm <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_lm)
# MARS --------------------------------------------------------------------
model_spec_mars <- mars(mode = "regression") %>%
set_engine("earth")
wflw_mars <- workflow() %>%
add_recipe(recipe = recipe_base) %>%
add_model(model_spec_mars)
nested_modeltime_tbl <- modeltime_nested_fit(
# Nested Data
nested_data = nested_data_tbl,
control = control_nested_fit(
verbose = TRUE,
allow_par = FALSE
),
# Add workflows
wflw_auto_arima,
wflw_lm,
wflw_mars,
wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]
nested_modeltime_tbl %>%
extract_nested_test_accuracy() %>%
filter(!is.na(package)) %>%
knitr::kable()
package | .model_id | .model_desc | .type | mae | mape | mase | smape | rmse | rsq |
---|---|---|---|---|---|---|---|---|---|
healthyR.data | 1 | ARIMA | Test | 0.7999450 | 109.14248 | 0.9442627 | 182.75646 | 1.0093453 | 0.0860141 |
healthyR.data | 2 | LM | Test | 0.8096082 | 197.08903 | 0.9556692 | 148.63912 | 0.9303029 | 0.0176677 |
healthyR.data | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR.data | 4 | NNAR | Test | 0.7675711 | 95.76575 | 0.9060481 | 182.32284 | 0.9939944 | 0.2296907 |
healthyR | 1 | ARIMA | Test | 0.6626925 | 119.24076 | 0.7541754 | 180.80660 | 0.8567785 | 0.1219689 |
healthyR | 2 | LM | Test | 0.6345916 | 119.89237 | 0.7221952 | 168.82655 | 0.7969395 | 0.0554915 |
healthyR | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR | 4 | NNAR | Test | 0.6400480 | 128.91708 | 0.7284049 | 164.89039 | 0.7989626 | 0.0075321 |
healthyR.ts | 1 | ARIMA | Test | 0.8672090 | 176.33121 | 0.9096682 | 124.81689 | 1.0770539 | 0.0036609 |
healthyR.ts | 2 | LM | Test | 0.8198718 | 140.33514 | 0.8600133 | 130.07286 | 1.0373471 | 0.0040454 |
healthyR.ts | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR.ts | 4 | NNAR | Test | 0.8689315 | 104.88587 | 0.9114751 | 184.82283 | 1.0859863 | 0.0105486 |
healthyverse | 1 | ARIMA | Test | 0.8056136 | 105.98852 | 1.1698006 | 113.90710 | 0.9560631 | 0.0132858 |
healthyverse | 2 | LM | Test | 0.6945897 | 119.11956 | 1.0085870 | 86.32281 | 0.8446955 | 0.0021313 |
healthyverse | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyverse | 4 | NNAR | Test | 0.7992850 | 101.01083 | 1.1606109 | 114.93997 | 0.9495578 | 0.0006789 |
healthyR.ai | 1 | ARIMA | Test | 0.7198749 | 98.92659 | 1.0271922 | 151.57735 | 0.9612333 | 0.0223451 |
healthyR.ai | 2 | LM | Test | 0.7149949 | 105.04149 | 1.0202290 | 136.13046 | 0.9693236 | 0.0118951 |
healthyR.ai | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
healthyR.ai | 4 | NNAR | Test | 0.7282733 | 105.73112 | 1.0391760 | 147.52877 | 0.9713736 | 0.0002457 |
TidyDensity | 1 | ARIMA | Test | 0.8627259 | 252.39615 | 0.9875323 | 107.34913 | 1.2004738 | 0.0046797 |
TidyDensity | 2 | LM | Test | 0.8630191 | 254.76844 | 0.9878679 | 106.37883 | 1.1887059 | 0.3253452 |
TidyDensity | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
TidyDensity | 4 | NNAR | Test | 0.9349232 | 142.19272 | 1.0701740 | 136.45358 | 1.3652241 | 0.0152394 |
tidyAML | 1 | ARIMA | Test | 0.7445653 | 94.64179 | 0.9823669 | 113.37827 | 0.8732447 | 0.0096053 |
tidyAML | 2 | LM | Test | 0.6738604 | 106.96863 | 0.8890801 | 91.52382 | 0.8158340 | 0.0752657 |
tidyAML | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
tidyAML | 4 | NNAR | Test | 0.7162354 | 99.90422 | 0.9449890 | 107.77185 | 0.8325153 | 0.0355660 |
RandomWalker | 1 | ARIMA | Test | 1.0886328 | 105.51869 | 0.6587249 | 172.22135 | 1.3270065 | 0.0516695 |
RandomWalker | 2 | LM | Test | 1.0995712 | 119.66572 | 0.6653437 | 164.46141 | 1.3141414 | 0.0050384 |
RandomWalker | 3 | NULL | NA | NA | NA | NA | NA | NA | NA |
RandomWalker | 4 | NNAR | Test | 1.0808211 | 118.31837 | 0.6539981 | 170.00741 | 1.3016579 | 0.0484288 |
nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_show = FALSE,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
modeltime_nested_select_best(
metric = "rmse",
minimize = TRUE,
filter_test_forecasts = TRUE
)
best_nested_modeltime_tbl %>%
extract_nested_best_model_report()
## # Nested Modeltime Table
##
## # A tibble: 8 × 10
## package .model_id .model_desc .type mae mape mase smape rmse rsq
## <fct> <int> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 healthyR.da… 2 LM Test 0.810 197. 0.956 149. 0.930 0.0177
## 2 healthyR 2 LM Test 0.635 120. 0.722 169. 0.797 0.0555
## 3 healthyR.ts 2 LM Test 0.820 140. 0.860 130. 1.04 0.00405
## 4 healthyverse 2 LM Test 0.695 119. 1.01 86.3 0.845 0.00213
## 5 healthyR.ai 1 ARIMA Test 0.720 98.9 1.03 152. 0.961 0.0223
## 6 TidyDensity 2 LM Test 0.863 255. 0.988 106. 1.19 0.325
## 7 tidyAML 2 LM Test 0.674 107. 0.889 91.5 0.816 0.0753
## 8 RandomWalker 4 NNAR Test 1.08 118. 0.654 170. 1.30 0.0484
best_nested_modeltime_tbl %>%
extract_nested_test_forecast() %>%
#filter(!is.na(.model_id)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")
Now that we have the best models, we can make our future forecasts.
nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
modeltime_nested_refit(
control = control_nested_refit(verbose = TRUE)
)
nested_modeltime_refit_tbl
## # Nested Modeltime Table
##
## # A tibble: 8 × 5
## package .actual_data .future_data .splits .modeltime_tables
## <fct> <list> <list> <list> <list>
## 1 healthyR.data <tibble> <tibble> <split [1714|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR <tibble> <tibble> <split [1705|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts <tibble> <tibble> <split [1651|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse <tibble> <tibble> <split [1622|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai <tibble> <tibble> <split [1447|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity <tibble> <tibble> <split [1298|28]> <mdl_tm_t [1 × 5]>
## 7 tidyAML <tibble> <tibble> <split [905|28]> <mdl_tm_t [1 × 5]>
## 8 RandomWalker <tibble> <tibble> <split [328|28]> <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
extract_nested_future_forecast() %>%
mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
x = .,
mean = std_mean,
sd = std_sd
)$standard_inverse_value)) %>%
mutate(across(.value:.conf_hi, .fns = ~ liiv(
x = .,
limit_lower = limit_lower,
limit_upper = limit_upper,
offset = offset
)$rescaled_v)) %>%
group_by(package) %>%
plot_modeltime_forecast(
.interactive = FALSE,
.conf_interval_alpha = 0.2,
.facet_scales = "free"
) +
theme_minimal() +
theme(legend.position = "bottom")