healthyverse_tsa

Time Series Analysis, Modeling and Forecasting of the Healthyverse

Packages Steven P. Sanderson II, MPH - Date: 2026-01-16

Introduction

This analysis follows a Nested Modeltime Workflow from modeltime along with using the NNS package. I use this to monitor the downloads of all of my packages:

Get Data

glimpse(downloads_tbl)
Rows: 165,653
Columns: 11
$ date      <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
$ time      <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
$ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
$ size      <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
$ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
$ r_arch    <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
$ r_os      <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
$ package   <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
$ version   <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
$ country   <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
$ ip_id     <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…

The last day in the data set is 2026-01-14 23:58:18, the file was birthed on: 2025-10-31 10:47:59.603742, and at report knit time is 1809.17 hours old. Happy analyzing!

Now that we have our data lets take a look at it using the skimr package.

skim(downloads_tbl)
   
Name downloads_tbl
Number of rows 165653
Number of columns 11
_______________________  
Column type frequency:  
character 6
Date 1
numeric 2
POSIXct 1
Timespan 1
________________________  
Group variables None

Data summary

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
r_version 121929 0.26 5 7 0 50 0
r_arch 121929 0.26 1 7 0 6 0
r_os 121929 0.26 7 19 0 24 0
package 0 1.00 7 13 0 8 0
version 0 1.00 5 17 0 62 0
country 15433 0.91 2 2 0 166 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-11-23 2026-01-14 2023-11-22 1872

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
size 0 1 1123475.02 1485248.20 355 32599 310813 2347869 5677952 ▇▁▂▁▁
ip_id 0 1 11218.23 21842.91 1 223 2808 11752 299146 ▇▁▁▁▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
date_time 0 1 2020-11-23 09:00:41 2026-01-14 23:58:18 2023-11-22 13:13:46 104721

Variable type: Timespan

skim_variable n_missing complete_rate min max median n_unique
time 0 1 0 59 12H 6M 31S 60

We can see that the following columns are missing a lot of data and for us are most likely not useful anyways, so we will drop them c(r_version, r_arch, r_os)

Plots

Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Now lets take a look at some time series decomposition graphs.

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Seasonal Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

ACF and PACF Diagnostics:

[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

[[7]]

[[8]]

Feature Engineering

Now that we have our basic data and a shot of what it looks like, let’s add some features to our data which can be very helpful in modeling. Lets start by making a tibble that is aggregated by the day and package, as we are going to be interested in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

Call:
stats::lm(formula = .formula, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-148.66  -36.89  -11.26   27.15  822.73 

Coefficients:
                                                     Estimate Std. Error
(Intercept)                                        -1.619e+02  5.812e+01
date                                                1.009e-02  3.078e-03
lag(value, 1)                                       1.071e-01  2.294e-02
lag(value, 7)                                       8.758e-02  2.369e-02
lag(value, 14)                                      8.153e-02  2.364e-02
lag(value, 21)                                      8.492e-02  2.372e-02
lag(value, 28)                                      6.545e-02  2.364e-02
lag(value, 35)                                      5.352e-02  2.364e-02
lag(value, 42)                                      6.618e-02  2.375e-02
lag(value, 49)                                      6.517e-02  2.366e-02
month(date, label = TRUE).L                        -9.087e+00  4.879e+00
month(date, label = TRUE).Q                        -8.334e-01  4.780e+00
month(date, label = TRUE).C                        -1.469e+01  4.819e+00
month(date, label = TRUE)^4                        -7.030e+00  4.860e+00
month(date, label = TRUE)^5                        -5.948e+00  4.846e+00
month(date, label = TRUE)^6                         8.137e-01  4.883e+00
month(date, label = TRUE)^7                        -4.203e+00  4.830e+00
month(date, label = TRUE)^8                        -4.171e+00  4.807e+00
month(date, label = TRUE)^9                         2.863e+00  4.821e+00
month(date, label = TRUE)^10                        8.440e-01  4.837e+00
month(date, label = TRUE)^11                       -4.084e+00  4.824e+00
fourier_vec(date, type = "sin", K = 1, period = 7) -1.084e+01  2.179e+00
fourier_vec(date, type = "cos", K = 1, period = 7)  7.009e+00  2.253e+00
                                                   t value Pr(>|t|)    
(Intercept)                                         -2.785 0.005405 ** 
date                                                 3.278 0.001067 ** 
lag(value, 1)                                        4.670 3.23e-06 ***
lag(value, 7)                                        3.697 0.000225 ***
lag(value, 14)                                       3.449 0.000575 ***
lag(value, 21)                                       3.580 0.000352 ***
lag(value, 28)                                       2.769 0.005680 ** 
lag(value, 35)                                       2.264 0.023716 *  
lag(value, 42)                                       2.786 0.005386 ** 
lag(value, 49)                                       2.754 0.005942 ** 
month(date, label = TRUE).L                         -1.863 0.062674 .  
month(date, label = TRUE).Q                         -0.174 0.861598    
month(date, label = TRUE).C                         -3.049 0.002329 ** 
month(date, label = TRUE)^4                         -1.446 0.148227    
month(date, label = TRUE)^5                         -1.227 0.219796    
month(date, label = TRUE)^6                          0.167 0.867675    
month(date, label = TRUE)^7                         -0.870 0.384280    
month(date, label = TRUE)^8                         -0.868 0.385731    
month(date, label = TRUE)^9                          0.594 0.552637    
month(date, label = TRUE)^10                         0.174 0.861511    
month(date, label = TRUE)^11                        -0.847 0.397348    
fourier_vec(date, type = "sin", K = 1, period = 7)  -4.974 7.19e-07 ***
fourier_vec(date, type = "cos", K = 1, period = 7)   3.110 0.001898 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 59.18 on 1800 degrees of freedom
  (49 observations deleted due to missingness)
Multiple R-squared:  0.2254,    Adjusted R-squared:  0.2159 
F-statistic:  23.8 on 22 and 1800 DF,  p-value: < 2.2e-16

NNS Forecasting

This is something I have been wanting to try for a while. The NNS package is a great package for forecasting time series data.

NNS GitHub

library(NNS)

data_list <- base_data |>
    select(package, value) |>
    group_split(package)

data_list |>
    imap(
        \(x, idx) {
            obj <- x
            x <- obj |> pull(value) |> tail(7*52)
            train_set_size <- length(x) - 56
            pkg <- obj |> pluck(1) |> unique()
#            sf <- NNS.seas(x, modulo = 7, plot = FALSE)$periods
            seas <- t(
                sapply(
                    1:25, 
                    function(i) c(
                        i,
                        sqrt(
                            mean((
                                NNS.ARMA(x, 
                                         h = 28, 
                                         training.set = train_set_size, 
                                         method = "lin", 
                                         seasonal.factor = i, 
                                         plot=FALSE
                                         ) - tail(x, 28)) ^ 2)))
                    )
                )
            colnames(seas) <- c("Period", "RMSE")
            sf <- seas[which.min(seas[, 2]), 1]
            
            cat(paste0("Package: ", pkg, "\n"))
            NNS.ARMA.optim(
                variable = x,
                h = 28,
                training.set = train_set_size,
                #seasonal.factor = seq(12, 60, 7),
                seasonal.factor = sf,
                pred.int = 0.95,
                plot = TRUE
            )
            title(
                sub = paste0("\n",
                             "Package: ", pkg, " - NNS Optimization")
            )
        }
    )
Package: healthyR
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 148.920842030399"
[1] "BEST method = 'lin' PATH MEMBER = c( 1 )"
[1] "BEST lin OBJECTIVE FUNCTION = 148.920842030399"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 137.010188276091"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 1 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 137.010188276091"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 1 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 141.187057975961"
[1] "BEST method = 'both' PATH MEMBER = c( 1 )"
[1] "BEST both OBJECTIVE FUNCTION = 141.187057975961"

Package: healthyR.ai
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 19 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 10.2934331461317"
[1] "BEST method = 'lin' PATH MEMBER = c( 19 )"
[1] "BEST lin OBJECTIVE FUNCTION = 10.2934331461317"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 19 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 15.6549664147421"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 19 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 15.6549664147421"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 19 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 12.0367547787774"
[1] "BEST method = 'both' PATH MEMBER = c( 19 )"
[1] "BEST both OBJECTIVE FUNCTION = 12.0367547787774"

Package: healthyR.data
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 23 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 4.00552093915195"
[1] "BEST method = 'lin' PATH MEMBER = c( 23 )"
[1] "BEST lin OBJECTIVE FUNCTION = 4.00552093915195"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 23 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 7.14191586934216"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 23 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 7.14191586934216"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 23 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 5.28511443053936"
[1] "BEST method = 'both' PATH MEMBER = c( 23 )"
[1] "BEST both OBJECTIVE FUNCTION = 5.28511443053936"

Package: healthyR.ts
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 4 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 9.63751037810354"
[1] "BEST method = 'lin' PATH MEMBER = c( 4 )"
[1] "BEST lin OBJECTIVE FUNCTION = 9.63751037810354"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 4 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 7.31628518228973"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 4 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 7.31628518228973"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 4 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 9.01612863248761"
[1] "BEST method = 'both' PATH MEMBER = c( 4 )"
[1] "BEST both OBJECTIVE FUNCTION = 9.01612863248761"

Package: healthyverse
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 20 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 8.04896123447652"
[1] "BEST method = 'lin' PATH MEMBER = c( 20 )"
[1] "BEST lin OBJECTIVE FUNCTION = 8.04896123447652"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 20 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 6.57848171599127"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 20 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 6.57848171599127"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 20 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 7.22543173337111"
[1] "BEST method = 'both' PATH MEMBER = c( 20 )"
[1] "BEST both OBJECTIVE FUNCTION = 7.22543173337111"

Package: RandomWalker
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 24 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 3.33900060604145"
[1] "BEST method = 'lin' PATH MEMBER = c( 24 )"
[1] "BEST lin OBJECTIVE FUNCTION = 3.33900060604145"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 24 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 2.66143364362892"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 24 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 2.66143364362892"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 24 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 2.65487854009529"
[1] "BEST method = 'both' PATH MEMBER = c( 24 )"
[1] "BEST both OBJECTIVE FUNCTION = 2.65487854009529"

Package: tidyAML
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 4 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 30.0339398004346"
[1] "BEST method = 'lin' PATH MEMBER = c( 4 )"
[1] "BEST lin OBJECTIVE FUNCTION = 30.0339398004346"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 4 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 17.754634277242"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 4 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 17.754634277242"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 4 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 23.8731210967479"
[1] "BEST method = 'both' PATH MEMBER = c( 4 )"
[1] "BEST both OBJECTIVE FUNCTION = 23.8731210967479"

Package: TidyDensity
[1] "CURRNET METHOD: lin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'lin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT lin OBJECTIVE FUNCTION = 4.93436515624358"
[1] "BEST method = 'lin' PATH MEMBER = c( 3 )"
[1] "BEST lin OBJECTIVE FUNCTION = 4.93436515624358"
[1] "CURRNET METHOD: nonlin"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'nonlin' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT nonlin OBJECTIVE FUNCTION = 2.58519664131672"
[1] "BEST method = 'nonlin' PATH MEMBER = c( 3 )"
[1] "BEST nonlin OBJECTIVE FUNCTION = 2.58519664131672"
[1] "CURRNET METHOD: both"
[1] "COPY LATEST PARAMETERS DIRECTLY FOR NNS.ARMA() IF ERROR:"
[1] "NNS.ARMA(... method =  'both' , seasonal.factor =  c( 3 ) ...)"
[1] "CURRENT both OBJECTIVE FUNCTION = 2.84532088576053"
[1] "BEST method = 'both' PATH MEMBER = c( 3 )"
[1] "BEST both OBJECTIVE FUNCTION = 2.84532088576053"

[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

[[4]]
NULL

[[5]]
NULL

[[6]]
NULL

[[7]]
NULL

[[8]]
NULL

Pre-Processing

Now we are going to do some basic pre-processing.

data_padded_tbl <- base_data %>%
  pad_by_time(
    .date_var  = date,
    .pad_value = 0
  )

# Get log interval and standardization parameters
log_params  <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset      <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
  # Get log interval transform
  mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean   <- std_params$mean
std_sd     <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
  group_by(package) %>%
  # get standardization
  mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
  tk_augment_fourier(
    .date_var = date,
    .periods  = c(7, 14, 30, 90, 180),
    .K        = 2
  ) %>%
  tk_augment_timeseries_signature(
    .date_var = date
  ) %>%
  ungroup() %>%
  select(-c(value, -year.iso))

Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.

To do this we will use the nest_timeseries and split_nested_timeseries functions to create a nested tibble.

horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%

    # 0. Filter out column where package is NA
    filter(!is.na(package)) %>%
    
    # 1. Extending: We'll predict n days into the future.
    extend_timeseries(
        .id_var        = package,
        .date_var      = date,
        .length_future = horizon
    ) %>%
    
    # 2. Nesting: We'll group by id, and create a future dataset
    #    that forecasts n days of extended data and
    #    an actual dataset that contains n*2 days
    nest_timeseries(
        .id_var        = package,
        .length_future = horizon
        #.length_actual = horizon*2
    ) %>%
    
   # 3. Splitting: We'll take the actual data and create splits
   #    for accuracy and confidence interval estimation of n das (test)
   #    and the rest is training data
    split_nested_timeseries(
        .length_test = horizon
    )

nested_data_tbl
# A tibble: 8 × 4
  package       .actual_data          .future_data       .splits          
  <fct>         <list>                <list>             <list>           
1 healthyR.data <tibble [1,863 × 50]> <tibble [28 × 50]> <split [1835|28]>
2 healthyR      <tibble [1,855 × 50]> <tibble [28 × 50]> <split [1827|28]>
3 healthyR.ts   <tibble [1,794 × 50]> <tibble [28 × 50]> <split [1766|28]>
4 healthyverse  <tibble [1,757 × 50]> <tibble [28 × 50]> <split [1729|28]>
5 healthyR.ai   <tibble [1,597 × 50]> <tibble [28 × 50]> <split [1569|28]>
6 TidyDensity   <tibble [1,448 × 50]> <tibble [28 × 50]> <split [1420|28]>
7 tidyAML       <tibble [1,055 × 50]> <tibble [28 × 50]> <split [1027|28]>
8 RandomWalker  <tibble [478 × 50]>   <tibble [28 × 50]> <split [450|28]> 

Now it is time to make some recipes and models using the modeltime workflow.

Modeltime Workflow

Recipe Object

recipe_base <- recipe(
  value_trans ~ .
  , data = extract_nested_test_split(nested_data_tbl)
  )

recipe_base

recipe_date <- recipe(
  value_trans ~ date
  , data = extract_nested_test_split(nested_data_tbl)
  )

Models

# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
  set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
  mode              = "regression"
  , seasonal_period = "auto"
) %>%
  set_engine("nnetar")

wflw_nnetar <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
  set_engine("lm")

wflw_lm <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_mars <- workflow() %>%
  add_recipe(recipe = recipe_date) %>%
  add_model(model_spec_mars)

Nested Modeltime Tables

nested_modeltime_tbl <- modeltime_nested_fit(
  # Nested Data
  nested_data = nested_data_tbl,
   control = control_nested_fit(
     verbose = TRUE,
     allow_par = FALSE
   ),
  # Add workflows
  wflw_auto_arima,
  wflw_lm,
  wflw_mars,
  wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]

Model Accuracy

nested_modeltime_tbl %>%
  extract_nested_test_accuracy() %>%
  filter(!is.na(package)) %>%
  knitr::kable()
package .model_id .model_desc .type mae mape mase smape rmse rsq
healthyR.data 1 ARIMA Test 0.7334873 145.91329 0.6149974 148.59092 0.8544037 0.0017299
healthyR.data 2 LM Test 0.7221575 164.72137 0.6054979 145.68455 0.8545065 0.0266586
healthyR.data 3 EARTH Test 0.8074656 161.42420 0.6770251 156.99346 1.0103475 0.0053495
healthyR.data 4 NNAR Test 0.7766743 143.73122 0.6512078 146.98974 0.9447595 0.0043560
healthyR 1 ARIMA Test 0.5989769 191.06942 0.6994818 123.54546 0.7728230 0.0145669
healthyR 2 LM Test 0.6538337 347.09433 0.7635432 113.39133 0.8276689 0.0071466
healthyR 3 EARTH Test 1.9735113 1463.79961 2.3046552 183.39521 2.1717887 0.0057165
healthyR 4 NNAR Test 0.6571171 369.29053 0.7673776 116.81450 0.8714677 0.0076451
healthyR.ts 1 ARIMA Test 0.8754996 99.20711 0.8371220 151.71733 1.1691583 0.0046950
healthyR.ts 2 LM Test 0.9506151 106.91124 0.9089448 130.42440 1.2840217 0.0544702
healthyR.ts 3 EARTH Test 0.7586471 116.97101 0.7253917 98.41252 0.9886629 0.2569398
healthyR.ts 4 NNAR Test 0.9515170 103.52824 0.9098071 139.64653 1.2963465 0.0134673
healthyverse 1 ARIMA Test 0.8697332 91.76079 0.9994492 128.78178 1.0517810 0.0001699
healthyverse 2 LM Test 0.9454449 120.34996 1.0864528 128.04375 1.1224576 0.0077246
healthyverse 3 EARTH Test 0.8918691 178.04572 1.0248865 90.91918 1.0633622 0.4144917
healthyverse 4 NNAR Test 0.9651861 110.16833 1.1091383 140.82241 1.1925664 0.0283160
healthyR.ai 1 ARIMA Test 1.1321128 113.40491 1.1365372 182.05103 1.3188833 0.0396432
healthyR.ai 2 LM Test 0.9887703 113.01504 0.9926345 146.69351 1.1307659 0.0626436
healthyR.ai 3 EARTH Test 1.4833615 185.06157 1.4891585 182.00926 1.6564987 0.0247856
healthyR.ai 4 NNAR Test 0.9939146 119.02638 0.9977989 147.00037 1.1444930 0.0619689
TidyDensity 1 ARIMA Test 1.0603123 152.43770 0.5825665 178.17528 1.1820765 0.0788830
TidyDensity 2 LM Test 1.0682531 325.08536 0.5869294 159.66293 1.1715393 0.0734074
TidyDensity 3 EARTH Test 1.0270632 134.87003 0.5642985 143.65374 1.2483537 0.0299400
TidyDensity 4 NNAR Test 1.0251686 245.64217 0.5632575 158.48336 1.1732880 0.0490875
tidyAML 1 ARIMA Test 1.0018296 83.99809 0.9554943 150.99119 1.2136255 0.0011730
tidyAML 2 LM Test 1.2189796 164.33243 1.1626010 145.72908 1.4483203 0.0298504
tidyAML 3 EARTH Test 0.8571451 84.73636 0.8175016 103.31774 1.0718055 0.0144375
tidyAML 4 NNAR Test 0.9049709 132.96131 0.8631154 116.01854 1.1365866 0.0056016
RandomWalker 1 ARIMA Test 1.0328009 120.98485 0.6390495 180.13804 1.0989217 0.0079241
RandomWalker 2 LM Test 1.1431245 146.13452 0.7073126 168.17749 1.2312323 0.0095345
RandomWalker 3 EARTH Test 1.0545115 134.05821 0.6524830 170.74912 1.0964369 0.0012894
RandomWalker 4 NNAR Test 1.1055340 148.69670 0.6840534 163.31336 1.1993101 0.0031517

Plot Models

nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show  = FALSE,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  facet_wrap(~ package, nrow = 3) +
  theme(legend.position = "bottom")

Best Model

best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
  modeltime_nested_select_best(
    metric = "rmse",
    minimize = TRUE,
    filter_test_forecasts = TRUE
  )

best_nested_modeltime_tbl %>%
  extract_nested_best_model_report()
# Nested Modeltime Table
  

# A tibble: 8 × 10
  package      .model_id .model_desc .type   mae  mape  mase smape  rmse     rsq
  <fct>            <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
1 healthyR.da…         1 ARIMA       Test  0.733 146.  0.615 149.  0.854 1.73e-3
2 healthyR             1 ARIMA       Test  0.599 191.  0.699 124.  0.773 1.46e-2
3 healthyR.ts          3 EARTH       Test  0.759 117.  0.725  98.4 0.989 2.57e-1
4 healthyverse         1 ARIMA       Test  0.870  91.8 0.999 129.  1.05  1.70e-4
5 healthyR.ai          2 LM          Test  0.989 113.  0.993 147.  1.13  6.26e-2
6 TidyDensity          2 LM          Test  1.07  325.  0.587 160.  1.17  7.34e-2
7 tidyAML              3 EARTH       Test  0.857  84.7 0.818 103.  1.07  1.44e-2
8 RandomWalker         3 EARTH       Test  1.05  134.  0.652 171.  1.10  1.29e-3
best_nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  #filter(!is.na(.model_id)) %>%
  group_by(package) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")

Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
    modeltime_nested_refit(
        control = control_nested_refit(verbose = TRUE)
    )
nested_modeltime_refit_tbl
# Nested Modeltime Table
  

# A tibble: 8 × 5
  package       .actual_data .future_data .splits           .modeltime_tables 
  <fct>         <list>       <list>       <list>            <list>            
1 healthyR.data <tibble>     <tibble>     <split [1835|28]> <mdl_tm_t [1 × 5]>
2 healthyR      <tibble>     <tibble>     <split [1827|28]> <mdl_tm_t [1 × 5]>
3 healthyR.ts   <tibble>     <tibble>     <split [1766|28]> <mdl_tm_t [1 × 5]>
4 healthyverse  <tibble>     <tibble>     <split [1729|28]> <mdl_tm_t [1 × 5]>
5 healthyR.ai   <tibble>     <tibble>     <split [1569|28]> <mdl_tm_t [1 × 5]>
6 TidyDensity   <tibble>     <tibble>     <split [1420|28]> <mdl_tm_t [1 × 5]>
7 tidyAML       <tibble>     <tibble>     <split [1027|28]> <mdl_tm_t [1 × 5]>
8 RandomWalker  <tibble>     <tibble>     <split [450|28]>  <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
  extract_nested_future_forecast() %>%
  group_by(package) %>%
  mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
    x    = .,
    mean = std_mean,
    sd   = std_sd
  )$standard_inverse_value)) %>%
  mutate(across(.value:.conf_hi, .fns = ~ liiv(
    x = .,
    limit_lower = limit_lower,
    limit_upper = limit_upper,
    offset      = offset
  )$rescaled_v)) %>%
  filter_by_time(.date_var = .index, .start_date = max(.index) - 60) %>%
  ungroup() %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  facet_wrap(~ package, nrow = 3) +
  theme_minimal() +
  theme(legend.position = "bottom")