healthyverse_tsa

Time Series Analysis and Nested Modeling of the Healthyverse Packages

Steven P. Sanderson II, MPH - Date: 18 September, 2024

This analysis follows a Nested Modeltime Workflow.

Get Data

glimpse(downloads_tbl)
## Rows: 114,308
## Columns: 11
## $ date      <date> 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23, 2020-11-23,…
## $ time      <Period> 15H 36M 55S, 11H 26M 39S, 23H 34M 44S, 18H 39M 32S, 9H 0M…
## $ date_time <dttm> 2020-11-23 15:36:55, 2020-11-23 11:26:39, 2020-11-23 23:34:…
## $ size      <int> 4858294, 4858294, 4858301, 4858295, 361, 4863722, 4864794, 4…
## $ r_version <chr> NA, "4.0.3", "3.5.3", "3.5.2", NA, NA, NA, NA, NA, NA, NA, N…
## $ r_arch    <chr> NA, "x86_64", "x86_64", "x86_64", NA, NA, NA, NA, NA, NA, NA…
## $ r_os      <chr> NA, "mingw32", "mingw32", "linux-gnu", NA, NA, NA, NA, NA, N…
## $ package   <chr> "healthyR.data", "healthyR.data", "healthyR.data", "healthyR…
## $ version   <chr> "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0", "1.0.0…
## $ country   <chr> "US", "US", "US", "GB", "US", "US", "DE", "HK", "JP", "US", …
## $ ip_id     <int> 2069, 2804, 78827, 27595, 90474, 90474, 42435, 74, 7655, 638…

The last day in the data set is 2024-09-16 20:50:10, the file was birthed on: 2024-08-07 07:35:44, and at report knit time is -969.24 hours old. Happy analyzing!

Now that we have our data lets take a look at it using the skimr package.

skim(downloads_tbl)
   
Name downloads_tbl
Number of rows 114308
Number of columns 11
_______________________  
Column type frequency:  
character 6
Date 1
numeric 2
POSIXct 1
Timespan 1
________________________  
Group variables None

Data summary

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
r_version 80446 0.30 5 5 0 43 0
r_arch 80446 0.30 3 7 0 5 0
r_os 80446 0.30 7 15 0 19 0
package 0 1.00 7 13 0 7 0
version 0 1.00 5 17 0 59 0
country 9735 0.91 2 2 0 157 0

Variable type: Date

skim_variable n_missing complete_rate min max median n_unique
date 0 1 2020-11-23 2024-09-16 2023-02-10 1394

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
size 0 1 1174968.91 1556122.24 355 14701 271195 2373269 5677952 ▇▁▂▁▁
ip_id 0 1 10278.81 17979.46 1 317 3075 11430 143633 ▇▁▁▁▁

Variable type: POSIXct

skim_variable n_missing complete_rate min max median n_unique
date_time 0 1 2020-11-23 09:00:41 2024-09-16 20:50:10 2023-02-10 09:19:16 69228

Variable type: Timespan

skim_variable n_missing complete_rate min max median n_unique
time 0 1 0 59 23.5 60

We can see that the following columns are missing a lot of data and for us are most likely not useful anyways, so we will drop them c(r_version, r_arch, r_os)

Plots

Now lets take a look at a time-series plot of the total daily downloads by package. We will use a log scale and place a vertical line at each version release for each package.

Now lets take a look at some time series decomposition graphs.

Feature Engineering

Now that we have our basic data and a shot of what it looks like, let’s add some features to our data which can be very helpful in modeling. Lets start by making a tibble that is aggregated by the day and package, as we are going to be interested in forecasting the next 4 weeks or 28 days for each package. First lets get our base data.

## 
## Call:
## stats::lm(formula = .formula, data = df)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -153.26  -34.21   -9.67   26.08  798.75 
## 
## Coefficients:
##                                                      Estimate Std. Error
## (Intercept)                                        -1.785e+02  8.684e+01
## date                                                1.067e-02  4.601e-03
## lag(value, 1)                                       1.496e-01  2.628e-02
## lag(value, 7)                                       1.057e-01  2.751e-02
## lag(value, 14)                                      1.145e-01  2.761e-02
## lag(value, 21)                                      2.466e-02  2.773e-02
## lag(value, 28)                                      8.019e-02  2.757e-02
## lag(value, 35)                                      6.843e-02  2.774e-02
## lag(value, 42)                                      3.773e-02  2.775e-02
## lag(value, 49)                                      9.955e-02  2.757e-02
## month(date, label = TRUE).L                        -1.009e+01  5.719e+00
## month(date, label = TRUE).Q                         2.583e+00  5.562e+00
## month(date, label = TRUE).C                        -1.150e+01  5.673e+00
## month(date, label = TRUE)^4                        -9.561e+00  5.682e+00
## month(date, label = TRUE)^5                        -1.590e+01  5.604e+00
## month(date, label = TRUE)^6                        -3.738e+00  5.687e+00
## month(date, label = TRUE)^7                        -9.758e+00  5.557e+00
## month(date, label = TRUE)^8                        -1.010e+00  5.541e+00
## month(date, label = TRUE)^9                         6.308e+00  5.462e+00
## month(date, label = TRUE)^10                        6.642e+00  5.356e+00
## month(date, label = TRUE)^11                       -5.051e+00  5.293e+00
## fourier_vec(date, type = "sin", K = 1, period = 7) -1.161e+01  2.517e+00
## fourier_vec(date, type = "cos", K = 1, period = 7)  6.280e+00  2.605e+00
##                                                    t value Pr(>|t|)    
## (Intercept)                                         -2.056 0.039981 *  
## date                                                 2.319 0.020544 *  
## lag(value, 1)                                        5.693 1.54e-08 ***
## lag(value, 7)                                        3.843 0.000127 ***
## lag(value, 14)                                       4.149 3.55e-05 ***
## lag(value, 21)                                       0.889 0.374064    
## lag(value, 28)                                       2.909 0.003692 ** 
## lag(value, 35)                                       2.467 0.013757 *  
## lag(value, 42)                                       1.360 0.174180    
## lag(value, 49)                                       3.610 0.000317 ***
## month(date, label = TRUE).L                         -1.764 0.077940 .  
## month(date, label = TRUE).Q                          0.464 0.642504    
## month(date, label = TRUE).C                         -2.027 0.042877 *  
## month(date, label = TRUE)^4                         -1.683 0.092703 .  
## month(date, label = TRUE)^5                         -2.838 0.004612 ** 
## month(date, label = TRUE)^6                         -0.657 0.511086    
## month(date, label = TRUE)^7                         -1.756 0.079308 .  
## month(date, label = TRUE)^8                         -0.182 0.855324    
## month(date, label = TRUE)^9                          1.155 0.248359    
## month(date, label = TRUE)^10                         1.240 0.215201    
## month(date, label = TRUE)^11                        -0.954 0.340197    
## fourier_vec(date, type = "sin", K = 1, period = 7)  -4.613 4.36e-06 ***
## fourier_vec(date, type = "cos", K = 1, period = 7)   2.411 0.016050 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 57.86 on 1322 degrees of freedom
##   (49 observations deleted due to missingness)
## Multiple R-squared:  0.2593, Adjusted R-squared:  0.2469 
## F-statistic: 21.03 on 22 and 1322 DF,  p-value: < 2.2e-16

Now we are going to do some basic pre-processing.

data_padded_tbl <- base_data %>%
  pad_by_time(
    .date_var  = date,
    .pad_value = 0
  )

# Get log interval and standardization parameters
log_params  <- liv(data_padded_tbl$value, limit_lower = 0, offset = 1, silent = TRUE)
limit_lower <- log_params$limit_lower
limit_upper <- log_params$limit_upper
offset      <- log_params$offset

data_liv_tbl <- data_padded_tbl %>%
  # Get log interval transform
  mutate(value_trans = liv(value, limit_lower = 0, offset = 1, silent = TRUE)$log_scaled)

# Get Standardization Params
std_params <- standard_vec(data_liv_tbl$value_trans, silent = TRUE)
std_mean   <- std_params$mean
std_sd     <- std_params$sd

data_transformed_tbl <- data_liv_tbl %>%
  # get standardization
  mutate(value_trans = standard_vec(value_trans, silent = TRUE)$standard_scaled) %>%
  select(-value)

Since this is panel data we can follow one of two different modeling strategies. We can search for a global model in the panel data or we can use nested forecasting finding the best model for each of the time series. Since we only have 5 panels, we will use nested forecasting.

To do this we will use the nest_timeseries and split_nested_timeseries functions to create a nested tibble.

horizon <- 4*7

nested_data_tbl <- data_transformed_tbl %>%
    
    # 1. Extending: We'll predict n days into the future.
    extend_timeseries(
        .id_var        = package,
        .date_var      = date,
        .length_future = horizon
    ) %>%
    
    # 2. Nesting: We'll group by id, and create a future dataset
    #    that forecasts n days of extended data and
    #    an actual dataset that contains n*2 days
    nest_timeseries(
        .id_var        = package,
        .length_future = horizon
        #.length_actual = horizon*2
    ) %>%
    
   # 3. Splitting: We'll take the actual data and create splits
   #    for accuracy and confidence interval estimation of n das (test)
   #    and the rest is training data
    split_nested_timeseries(
        .length_test = horizon
    )

nested_data_tbl
## # A tibble: 8 × 4
##   package       .actual_data         .future_data      .splits          
##   <fct>         <list>               <list>            <list>           
## 1 healthyR.data <tibble [1,362 × 2]> <tibble [28 × 2]> <split [1334|28]>
## 2 healthyR      <tibble [1,354 × 2]> <tibble [28 × 2]> <split [1326|28]>
## 3 <NA>          <tibble [26 × 2]>    <tibble [28 × 2]> <split [0|26]>   
## 4 healthyR.ts   <tibble [1,300 × 2]> <tibble [28 × 2]> <split [1272|28]>
## 5 healthyverse  <tibble [1,271 × 2]> <tibble [28 × 2]> <split [1243|28]>
## 6 healthyR.ai   <tibble [1,097 × 2]> <tibble [28 × 2]> <split [1069|28]>
## 7 TidyDensity   <tibble [951 × 2]>   <tibble [28 × 2]> <split [923|28]> 
## 8 tidyAML       <tibble [567 × 2]>   <tibble [28 × 2]> <split [539|28]>

Now it is time to make some recipes and models using the modeltime workflow.

Modeltime Workflow

Recipe Object

recipe_base <- recipe(
  value_trans ~ date
  , data = extract_nested_test_split(nested_data_tbl)
  )

recipe_base

recipe_date <- recipe_base %>%
    step_mutate(date = as.numeric(date))

Models

# Models ------------------------------------------------------------------

# Auto ARIMA --------------------------------------------------------------

model_spec_arima_no_boost <- arima_reg() %>%
  set_engine(engine = "auto_arima")

wflw_auto_arima <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_arima_no_boost)

# NNETAR ------------------------------------------------------------------

model_spec_nnetar <- nnetar_reg(
  mode              = "regression"
  , seasonal_period = "auto"
) %>%
  set_engine("nnetar")

wflw_nnetar <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_nnetar)

# TSLM --------------------------------------------------------------------

model_spec_lm <- linear_reg() %>%
  set_engine("lm")

wflw_lm <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_lm)

# MARS --------------------------------------------------------------------

model_spec_mars <- mars(mode = "regression") %>%
  set_engine("earth")

wflw_mars <- workflow() %>%
  add_recipe(recipe = recipe_base) %>%
  add_model(model_spec_mars)

Nested Modeltime Tables

nested_modeltime_tbl <- modeltime_nested_fit(
  # Nested Data
  nested_data = nested_data_tbl,
   control = control_nested_fit(
     verbose = TRUE,
     allow_par = FALSE
   ),
  # Add workflows
  wflw_auto_arima,
  wflw_lm,
  wflw_mars,
  wflw_nnetar
)
nested_modeltime_tbl <- nested_modeltime_tbl[!is.na(nested_modeltime_tbl$package),]

Model Accuracy

nested_modeltime_tbl %>%
  extract_nested_test_accuracy() %>%
  knitr::kable()
package .model_id .model_desc .type mae mape mase smape rmse rsq
healthyR.data 1 ARIMA Test 0.6762037 151.22331 0.6414321 145.91432 0.9754533 0.0000263
healthyR.data 2 LM Test 0.8710625 478.71953 0.8262709 162.69652 1.0581345 0.0592768
healthyR.data 3 EARTH Test 0.7025489 273.88106 0.6664225 138.72781 0.9942830 0.0592768
healthyR.data 4 NNAR Test 0.7054533 202.17590 0.6691776 153.07118 0.9877622 0.0591224
healthyR 1 ARIMA Test 0.7072998 100.38139 0.6207526 107.36956 0.9840237 0.0010822
healthyR 2 LM Test 0.7967866 111.07892 0.6992896 187.30137 1.0197372 0.0011758
healthyR 3 EARTH Test 2.0583906 557.97095 1.8065202 139.84743 2.3501892 0.0011758
healthyR 4 NNAR Test 0.7999962 122.28801 0.7021064 168.57946 1.0122805 0.0106535
NA 1 NULL NA NA NA NA NA NA NA
NA 2 NULL NA NA NA NA NA NA NA
NA 3 NULL NA NA NA NA NA NA NA
NA 4 NULL NA NA NA NA NA NA NA
healthyR.ts 1 ARIMA Test 1.0829038 213.70352 0.9837537 114.80783 1.2571165 0.0101235
healthyR.ts 2 LM Test 0.7233385 100.41617 0.6571100 110.29576 0.9865017 0.0673338
healthyR.ts 3 EARTH Test 0.7225711 101.30386 0.6564129 109.39724 0.9853220 0.0673338
healthyR.ts 4 NNAR Test 0.7588663 92.49702 0.6893850 167.91691 1.0312516 0.0644331
healthyverse 1 ARIMA Test 0.7414820 365.79759 0.7371412 115.00606 0.9073591 0.0141471
healthyverse 2 LM Test 0.7877555 457.66572 0.7831438 111.67655 0.9603303 0.0027845
healthyverse 3 EARTH Test 0.7280050 327.13844 0.7237431 116.69811 0.9013073 0.0027845
healthyverse 4 NNAR Test 0.7166520 230.73863 0.7124565 130.33056 0.8897526 0.0641540
healthyR.ai 1 ARIMA Test 0.8474760 101.91909 0.6283023 180.25975 1.0973409 0.0591561
healthyR.ai 2 LM Test 0.9111549 160.90951 0.6755126 156.45251 1.1711308 0.0181387
healthyR.ai 3 EARTH Test 1.5267046 671.14881 1.1318692 135.04193 1.8198775 0.0181387
healthyR.ai 4 NNAR Test 0.8701219 128.08278 0.6450915 165.74935 1.1145358 0.0194892
TidyDensity 1 ARIMA Test 0.6274427 437.16101 0.9204381 102.13513 0.7828415 0.0165144
TidyDensity 2 LM Test 0.6461648 439.44438 0.9479029 104.17631 0.7909825 0.0215161
TidyDensity 3 EARTH Test 0.5996340 143.42681 0.8796436 165.67274 0.8519578 0.0215161
TidyDensity 4 NNAR Test 0.5100736 180.03177 0.7482615 112.15195 0.7794180 0.0287302
tidyAML 1 ARIMA Test 0.6659487 196.16908 0.9561683 119.57412 0.8171095 0.0003989
tidyAML 2 LM Test 0.6544245 282.32486 0.9396219 116.55793 0.7720271 0.0017040
tidyAML 3 EARTH Test 0.6204415 485.75980 0.8908293 92.52238 0.8037057 0.0017040
tidyAML 4 NNAR Test 0.5889561 353.56911 0.8456226 97.56351 0.7597220 0.0219131

Plot Models

nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  group_by(package) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_show  = FALSE,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  theme(legend.position = "bottom")

Best Model

best_nested_modeltime_tbl <- nested_modeltime_tbl %>%
  modeltime_nested_select_best(
    metric = "rmse",
    minimize = TRUE,
    filter_test_forecasts = TRUE
  )

best_nested_modeltime_tbl %>%
  extract_nested_best_model_report()
## # Nested Modeltime Table
##   # A tibble: 7 × 10
##   package      .model_id .model_desc .type   mae  mape  mase smape  rmse     rsq
##   <fct>            <int> <chr>       <chr> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
## 1 healthyR.da…         1 ARIMA       Test  0.676  151. 0.641 146.  0.975 2.63e-5
## 2 healthyR             1 ARIMA       Test  0.707  100. 0.621 107.  0.984 1.08e-3
## 3 healthyR.ts          3 EARTH       Test  0.723  101. 0.656 109.  0.985 6.73e-2
## 4 healthyverse         4 NNAR        Test  0.717  231. 0.712 130.  0.890 6.42e-2
## 5 healthyR.ai          1 ARIMA       Test  0.847  102. 0.628 180.  1.10  5.92e-2
## 6 TidyDensity          4 NNAR        Test  0.510  180. 0.748 112.  0.779 2.87e-2
## 7 tidyAML              4 NNAR        Test  0.589  354. 0.846  97.6 0.760 2.19e-2
best_nested_modeltime_tbl %>%
  extract_nested_test_forecast() %>%
  #filter(!is.na(.model_id)) %>%
  group_by(package) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  theme(legend.position = "bottom")

Refitting and Future Forecast

Now that we have the best models, we can make our future forecasts.

nested_modeltime_refit_tbl <- best_nested_modeltime_tbl %>%
    modeltime_nested_refit(
        control = control_nested_refit(verbose = TRUE)
    )
nested_modeltime_refit_tbl
## # Nested Modeltime Table
##   # A tibble: 7 × 5
##   package       .actual_data .future_data .splits           .modeltime_tables 
##   <fct>         <list>       <list>       <list>            <list>            
## 1 healthyR.data <tibble>     <tibble>     <split [1334|28]> <mdl_tm_t [1 × 5]>
## 2 healthyR      <tibble>     <tibble>     <split [1326|28]> <mdl_tm_t [1 × 5]>
## 3 healthyR.ts   <tibble>     <tibble>     <split [1272|28]> <mdl_tm_t [1 × 5]>
## 4 healthyverse  <tibble>     <tibble>     <split [1243|28]> <mdl_tm_t [1 × 5]>
## 5 healthyR.ai   <tibble>     <tibble>     <split [1069|28]> <mdl_tm_t [1 × 5]>
## 6 TidyDensity   <tibble>     <tibble>     <split [923|28]>  <mdl_tm_t [1 × 5]>
## 7 tidyAML       <tibble>     <tibble>     <split [539|28]>  <mdl_tm_t [1 × 5]>
nested_modeltime_refit_tbl %>%
  extract_nested_future_forecast() %>%
  mutate(across(.value:.conf_hi, .fns = ~ standard_inv_vec(
    x    = .,
    mean = std_mean,
    sd   = std_sd
  )$standard_inverse_value)) %>%
  mutate(across(.value:.conf_hi, .fns = ~ liiv(
    x = .,
    limit_lower = limit_lower,
    limit_upper = limit_upper,
    offset      = offset
  )$rescaled_v)) %>%
  group_by(package) %>%
  plot_modeltime_forecast(
    .interactive = FALSE,
    .conf_interval_alpha = 0.2,
    .facet_scales = "free"
  ) +
  theme_minimal() +
  theme(legend.position = "bottom")