This is a boilerplate function to create automatically the following:
- recipe 
- model specification 
- workflow 
- calibration tibble and plot 
Usage
ts_auto_lm(
  .data,
  .date_col,
  .value_col,
  .formula,
  .rsamp_obj,
  .prefix = "ts_lm",
  .bootstrap_final = FALSE
)Arguments
- .data
- The data being passed to the function. The time-series object. 
- .date_col
- The column that holds the datetime. 
- .value_col
- The column that has the value 
- .formula
- The formula that is passed to the recipe like - value ~ .
- .rsamp_obj
- The rsample splits object 
- .prefix
- Default is - ts_lm
- .bootstrap_final
- Not yet implemented. 
Details
This uses parsnip::linear_reg() and sets the engine to lm
See also
https://parsnip.tidymodels.org/reference/linear_reg.html
Other Boiler_Plate:
ts_auto_arima(),
ts_auto_arima_xgboost(),
ts_auto_croston(),
ts_auto_exp_smoothing(),
ts_auto_glmnet(),
ts_auto_mars(),
ts_auto_nnetar(),
ts_auto_prophet_boost(),
ts_auto_prophet_reg(),
ts_auto_smooth_es(),
ts_auto_svm_poly(),
ts_auto_svm_rbf(),
ts_auto_theta(),
ts_auto_xgboost()
Examples
# \donttest{
library(dplyr)
library(timetk)
library(modeltime)
data <- AirPassengers %>%
  ts_to_tbl() %>%
  select(-index)
splits <- time_series_split(
  data
  , date_col
  , assess = 12
  , skip = 3
  , cumulative = TRUE
)
ts_lm <- ts_auto_lm(
  .data = data,
  .date_col = date_col,
  .value_col = value,
  .rsamp_obj = splits,
  .formula = value ~ .,
)
#> Warning: There was 1 warning in `dplyr::mutate()`.
#> ℹ In argument: `.nested.col = purrr::map2(...)`.
#> Caused by warning in `predict.lm()`:
#> ! prediction from rank-deficient fit; consider predict(., rankdeficient="NA")
#> Warning: There was 1 warning in `dplyr::mutate()`.
#> ℹ In argument: `.nested.col = purrr::map2(...)`.
#> Caused by warning in `predict.lm()`:
#> ! prediction from rank-deficient fit; consider predict(., rankdeficient="NA")
ts_lm$recipe_info
#> $recipe_call
#> recipe(.data = data, .date_col = date_col, .value_col = value, 
#>     .formula = value ~ ., .rsamp_obj = splits)
#> 
#> $recipe_syntax
#> [1] "ts_lm_recipe <-"                                                                                                    
#> [2] "\n  recipe(.data = data, .date_col = date_col, .value_col = value, .formula = value ~ \n    ., .rsamp_obj = splits)"
#> 
#> $rec_obj
#> 
#> ── Recipe ──────────────────────────────────────────────────────────────────────
#> 
#> ── Inputs 
#> Number of variables by role
#> outcome:   1
#> predictor: 1
#> 
#> ── Operations 
#> • Timeseries signature features from: date_col
#> • Novel factor level assignment for: recipes::all_nominal_predictors()
#> • Variable mutation for: tidyselect::vars_select_helpers$where(is.character)
#> • Variable mutation for: as.numeric(^date_col)
#> • Dummy variables from: recipes::all_nominal()
#> • Sparse, unbalanced variable filter on: recipes::all_predictors(), ...
#> • Centering and scaling for: recipes::all_numeric_predictors(), ...
#> • Linear combination filter on: recipes::all_numeric_predictors()
#> 
# }
