Steven P. Sanderson II, MPH - Date: 2025-10-29
This repo contains the analysis of downloads of my R packages:
All of which follow the “analyses as
package”
philosophy this repo itself is an R package that can installed using
remotes::install_github().
I have forked this project itself from
ggcharts-analysis.
While I analyze healthyverse packages here, the functions are written
in a way that you can analyze any CRAN package with a slight
modification to the download_log function.
This file was last updated on October 29, 2025.
library(packagedownloads)
library(tidyverse)
library(patchwork)
library(timetk)
library(knitr)
library(leaflet)
library(htmltools)
library(tmaptools)
library(mapview)
library(countrycode)
library(htmlwidgets)
library(webshot)
library(rmarkdown)
library(dtplyr)
start_date <- Sys.Date() - 9 #as.Date("2020-11-15")
end_date <- Sys.Date() - 2
total_downloads <- download_logs(start_date, end_date)
interactive <- FALSE
pkg_release_date_tbl()
downloads <- total_downloads |> filter(date == max(date))
daily_downloads <- compute_daily_downloads(downloads)
downloads_by_country <- compute_downloads_by_country(downloads)
p1 <- plot_cumulative_downloads(daily_downloads)
p2 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 +
plot_annotation(
title = "healthyverse Packages - Last Full Day",
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror",
caption = glue::glue("Source: RStudio CRAN Logs for {f(end_date)}"),
theme = patchwork_theme
)

downloads |>
count(package, version) |>
filter(grepl("[0-9]+\\.[0-9]+\\.[0-9]+", version)) |>
tidyr::pivot_wider(
id_cols = version
, names_from = package
, values_from = n
, values_fill = 0
) |>
arrange(version) |>
kable()
| version | RandomWalker | TidyDensity | healthyR | healthyR.ai | healthyR.data | healthyR.ts | healthyverse | tidyAML |
|---|---|---|---|---|---|---|---|---|
| 0.0.13 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0.0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 0.0.3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
| 0.0.6 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 18 |
| 0.1.1 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 0 |
| 0.1.8 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
| 0.2.1 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 0.2.2 | 0 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
| 0.2.8 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0.3.1 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | 0 |
| 1.0.0 | 13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.0.1 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 0 |
| 1.0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
| 1.0.3 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
| 1.0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 1.1.0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 0 |
| 1.2.0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 |
| 1.2.4 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.5.2 | 0 | 18 | 0 | 0 | 0 | 0 | 0 | 0 |
downloads |>
count(package, sort = TRUE) |>
tidyr::pivot_wider(
names_from = package,
values_from = n,
values_fill = 0
) |>
kable()
| tidyAML | TidyDensity | RandomWalker | healthyR.data | healthyR | healthyverse | healthyR.ai | healthyR.ts |
|---|---|---|---|---|---|---|---|
| 22 | 21 | 13 | 12 | 10 | 10 | 9 | 9 |
Here are the current 7 day trends for the healthyverse suite of
packages.
downloads <- total_downloads[date >= start_date]
daily_downloads <- compute_daily_downloads(downloads)
downloads_by_country <- compute_downloads_by_country(downloads)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = "healthyverse Packages - 7 Day Trend",
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2020-11-15")
daily_downloads <- compute_daily_downloads(downloads = total_downloads)
downloads_by_country <- compute_downloads_by_country(downloads = total_downloads)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = "healthyR packages are on the Rise",
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

pkg_tbl <- readRDS("pkg_release_tbl.rds")
dl_tbl <- total_downloads %>%
filter(grepl(pattern = "[0-9]+\\.[0-9]+\\.[0-9]+", version)) %>%
filter(
date != "2024-05-29" &
!(date == "2024-06-12" & package == "TidyDensity")
) |> # bad data on this for some reason
group_by(package) %>%
summarise_by_time(
.date_var = date,
.by = "week",
N = n()
) %>%
ungroup() %>%
select(date, package, N)
dl_tbl %>%
ggplot(aes(date, log1p(N))) +
theme_bw() +
geom_point(aes(group = package, color = package), size = 1) +
geom_line(aes(group = package, color = package)) +
ggtitle(paste("Package Downloads: {healthyverse}")) +
geom_smooth(method = "loess", color = "black", se = FALSE) +
geom_vline(
data = pkg_tbl
, aes(xintercept = as.numeric(date))
, color = "red"
, lwd = 1
, lty = "solid"
) +
facet_wrap(package ~., ncol = 2, scales = "free_x") +
theme_minimal() +
labs(
subtitle = "Vertical lines represent release dates",
x = "Date",
y = "log1p(Counts)",
color = "Package"
) +
theme(legend.position = "bottom")

dl_tbl %>%
select(date, N) %>%
summarise_by_time(
.date_var = date,
.by = "week",
Actual = sum(N, na.rm = TRUE)
) %>%
mutate(Actual = cumsum(Actual)) %>%
tk_augment_differences(.value = Actual, .differences = 1) %>%
tk_augment_differences(.value = Actual, .differences = 2) %>%
rename(velocity = contains("_diff1")) %>%
rename(acceleration = contains("_diff2")) %>%
pivot_longer(-date) %>%
mutate(name = str_to_title(name)) %>%
mutate(name = as_factor(name)) %>%
ggplot(aes(x = date, y = log1p(value), group = name)) +
geom_point(alpha = .2) +
geom_line(alpha = .2) +
geom_vline(
data = pkg_tbl
, aes(xintercept = as.numeric(date), color = package)
, lwd = 1
, lty = "solid"
) +
facet_wrap(name ~ ., ncol = 1, scale = "free") +
theme_minimal() +
labs(
title = "Total Downloads: Trend, Velocity, and Accelertion",
subtitle = "Vertical Lines Indicate a CRAN Release date for a package.",
x = "Date",
y = "",
color = ""
) +
theme(legend.position = "bottom")

A leaflet map of countries where a package has been downloaded.
mapping_dataset() %>%
head() %>%
knitr::kable()
| country | latitude | longitude | display_name | icon |
|---|---|---|---|---|
| United States | 39.78373 | -100.445882 | United States | https://nominatim.openstreetmap.org/ui/mapicons/poi_boundary_administrative.p.20.png |
| United Kingdom | 54.70235 | -3.276575 | United Kingdom | https://nominatim.openstreetmap.org/ui/mapicons/poi_boundary_administrative.p.20.png |
| Germany | 51.16382 | 10.447831 | Deutschland | https://nominatim.openstreetmap.org/ui/mapicons/poi_boundary_administrative.p.20.png |
| Hong Kong SAR China | 22.35063 | 114.184916 | 香港 Hong Kong, 中国 | https://nominatim.openstreetmap.org/ui/mapicons/poi_boundary_administrative.p.20.png |
| Japan | 36.57484 | 139.239418 | 日本 | https://nominatim.openstreetmap.org/ui/mapicons/poi_boundary_administrative.p.20.png |
| Chile | -31.76134 | -71.318770 | Chile | https://nominatim.openstreetmap.org/ui/mapicons/poi_boundary_administrative.p.20.png |
l <- map_leaflet()
saveWidget(l, "downloads_map.html")
webshot("downloads_map.html", file = "map.png",
cliprect = "viewport")

To date there has been downloads in a total of 161 different countries.
start_date <- as.Date("2020-11-15")
pkg <- "healthyR"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2020-11-15")
pkg <- "healthyR.ts"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2020-11-15")
pkg <- "healthyR.data"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2020-11-15")
pkg <- "healthyR.ai"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2020-11-15")
pkg <- "healthyverse"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2020-11-15")
pkg <- "TidyDensity"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2023-02-13")
pkg <- "tidyAML"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

start_date <- as.Date("2023-02-13")
pkg <- "RandomWalker"
daily_downloads <- compute_daily_downloads(
downloads = total_downloads
, pkg = pkg)
downloads_by_country <- compute_downloads_by_country(
downloads = total_downloads
, pkg = pkg)
p1 <- plot_daily_downloads(daily_downloads)
p2 <- plot_cumulative_downloads(daily_downloads)
p3 <- hist_daily_downloads(daily_downloads)
p4 <- plot_downloads_by_country(downloads_by_country)
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 +
plot_annotation(
title = glue::glue("Package: {pkg}"),
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

total_downloads %>%
count(package, version) %>%
filter(grepl(pattern = "[0-9]+\\.[0-9]+\\.[0-9]+", version)) %>%
filter(!str_detect(version, "tar.gz")) %>%
tidyr::pivot_wider(
id_cols = version
, names_from = package
, values_from = n
, values_fill = 0
) %>%
arrange(version) %>%
kable()
| version | RandomWalker | TidyDensity | healthyR | healthyR.ai | healthyR.data | healthyR.ts | healthyverse | tidyAML |
|---|---|---|---|---|---|---|---|---|
| 0.0.1 | 0 | 1331 | 0 | 655 | 0 | 0 | 0 | 961 |
| 0.0.10 | 0 | 0 | 0 | 779 | 0 | 0 | 0 | 0 |
| 0.0.11 | 0 | 0 | 0 | 615 | 0 | 0 | 0 | 0 |
| 0.0.12 | 0 | 0 | 0 | 869 | 0 | 0 | 0 | 0 |
| 0.0.13 | 0 | 0 | 0 | 4336 | 0 | 0 | 0 | 0 |
| 0.0.2 | 0 | 0 | 0 | 1906 | 0 | 0 | 0 | 2101 |
| 0.0.3 | 0 | 0 | 0 | 670 | 0 | 0 | 0 | 796 |
| 0.0.4 | 0 | 0 | 0 | 751 | 0 | 0 | 0 | 994 |
| 0.0.5 | 0 | 0 | 0 | 1333 | 0 | 0 | 0 | 3165 |
| 0.0.6 | 0 | 0 | 0 | 2751 | 0 | 0 | 0 | 1395 |
| 0.0.7 | 0 | 0 | 0 | 1003 | 0 | 0 | 0 | 0 |
| 0.0.8 | 0 | 0 | 0 | 1126 | 0 | 0 | 0 | 0 |
| 0.0.9 | 0 | 0 | 0 | 921 | 0 | 0 | 0 | 0 |
| 0.1.0 | 450 | 0 | 542 | 1672 | 0 | 776 | 0 | 0 |
| 0.1.1 | 0 | 0 | 1587 | 1704 | 0 | 2298 | 0 | 0 |
| 0.1.2 | 0 | 0 | 1815 | 0 | 0 | 1289 | 0 | 0 |
| 0.1.3 | 0 | 0 | 616 | 0 | 0 | 1412 | 0 | 0 |
| 0.1.4 | 0 | 0 | 668 | 0 | 0 | 987 | 0 | 0 |
| 0.1.5 | 0 | 0 | 1309 | 0 | 0 | 819 | 0 | 0 |
| 0.1.6 | 0 | 0 | 2516 | 0 | 0 | 559 | 0 | 0 |
| 0.1.7 | 0 | 0 | 1303 | 0 | 0 | 1552 | 0 | 0 |
| 0.1.8 | 0 | 0 | 2493 | 0 | 0 | 2487 | 0 | 0 |
| 0.1.9 | 0 | 0 | 1171 | 0 | 0 | 794 | 0 | 0 |
| 0.2.0 | 3490 | 0 | 2419 | 0 | 0 | 798 | 0 | 0 |
| 0.2.1 | 0 | 0 | 4973 | 0 | 0 | 613 | 0 | 0 |
| 0.2.10 | 0 | 0 | 0 | 0 | 0 | 697 | 0 | 0 |
| 0.2.11 | 0 | 0 | 0 | 0 | 0 | 729 | 0 | 0 |
| 0.2.2 | 0 | 0 | 3707 | 0 | 0 | 836 | 0 | 0 |
| 0.2.3 | 0 | 0 | 0 | 0 | 0 | 845 | 0 | 0 |
| 0.2.4 | 0 | 0 | 0 | 0 | 0 | 471 | 0 | 0 |
| 0.2.5 | 0 | 0 | 0 | 0 | 0 | 765 | 0 | 0 |
| 0.2.6 | 0 | 0 | 0 | 0 | 0 | 627 | 0 | 0 |
| 0.2.7 | 0 | 0 | 0 | 0 | 0 | 1012 | 0 | 0 |
| 0.2.8 | 0 | 0 | 0 | 0 | 0 | 2868 | 0 | 0 |
| 0.2.9 | 0 | 0 | 0 | 0 | 0 | 913 | 0 | 0 |
| 0.3.0 | 1948 | 0 | 0 | 0 | 0 | 3179 | 0 | 0 |
| 0.3.1 | 0 | 0 | 0 | 0 | 0 | 2780 | 0 | 0 |
| 1.0.0 | 1187 | 685 | 0 | 0 | 3192 | 0 | 2662 | 0 |
| 1.0.1 | 0 | 2290 | 0 | 0 | 10492 | 0 | 2465 | 0 |
| 1.0.2 | 0 | 0 | 0 | 0 | 2259 | 0 | 3902 | 0 |
| 1.0.3 | 0 | 0 | 0 | 0 | 3858 | 0 | 647 | 0 |
| 1.0.4 | 0 | 0 | 0 | 0 | 0 | 0 | 3776 | 0 |
| 1.1.0 | 0 | 724 | 0 | 0 | 692 | 0 | 2395 | 0 |
| 1.1.1 | 0 | 0 | 0 | 0 | 1285 | 0 | 0 | 0 |
| 1.2.0 | 0 | 809 | 0 | 0 | 1802 | 0 | 0 | 0 |
| 1.2.1 | 0 | 623 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.2.2 | 0 | 836 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.2.3 | 0 | 870 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.2.4 | 0 | 3442 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.2.5 | 0 | 2064 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.2.6 | 0 | 1342 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.3.0 | 0 | 1842 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.4.0 | 0 | 1274 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.5.0 | 0 | 5198 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.5.1 | 0 | 666 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1.5.2 | 0 | 2126 | 0 | 0 | 0 | 0 | 0 | 0 |
total_downloads %>%
count(package, sort = TRUE) %>%
kable()
| package | n |
|---|---|
| healthyR.ts | 30121 |
| TidyDensity | 26126 |
| healthyR | 25124 |
| healthyR.data | 23580 |
| healthyR.ai | 21096 |
| healthyverse | 15847 |
| tidyAML | 9412 |
| RandomWalker | 7075 |
p1 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "healthyR")
p2 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "healthyR.ts")
p3 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "healthyR.data")
p4 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "healthyverse")
p5 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "healthyR.ai")
p6 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "TidyDensity")
p7 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "tidyAML")
p8 <- plot_cumulative_downloads_pkg(total_downloads, pkg = "RandomWalker")
f <- function(date) format(date, "%b %d, %Y")
patchwork_theme <- theme_classic(base_size = 24) +
theme(
plot.title = element_text(face = "bold"),
plot.caption = element_text(size = 14)
)
p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 +
plot_annotation(
title = "healthyR packages are on the Rise",
subtitle = "A Summary of Downloads from the RStudio CRAN Mirror - Since Inception",
caption = glue::glue("Source: RStudio CRAN Logs ({f(start_date)} to {f(end_date)})"),
theme = patchwork_theme
)

pkg_rel <- readRDS("pkg_release_tbl.rds") |>
# Filter out bad data, not sure why it occurrs.
filter(
date != "2024-05-29" &
!(date == "2024-06-12" & package == "TidyDensity")
) |>
arrange(date) |>
group_by(package) |>
mutate(rel_no = row_number()) |>
ungroup()
thirty_day_runup_tbl <- total_downloads |>
lazy_dt() |>
select(date, package, version) |>
group_by(date, package, version) |>
summarise(dl_count = n()) |>
ungroup() |>
arrange(date) |>
group_by(package, version) |>
mutate(rec_no = row_number()) |>
mutate(cum_dl = cumsum(dl_count)) |>
filter(rec_no < 31) |>
ungroup() |>
mutate(pkg_ver = paste0(package, "-", version)) |>
collect()
release_tbl <- left_join(
x = thirty_day_runup_tbl,
y = pkg_rel
) |>
group_by(package) |>
fill(release_record, .direction = "down") |>
fill(rel_no, .direction = "down") |>
mutate(
release_record = as.factor(release_record),
rel_no = as.factor(rel_no)
) |>
ungroup()
latest_group_tbl <- release_tbl |>
group_by(package) |>
arrange(date, rec_no) |>
mutate(group_no = as.numeric(rel_no)) |>
filter(group_no == max(group_no)) |>
ungroup()
joined_tbl <- left_join(
x = thirty_day_runup_tbl,
y = latest_group_tbl
) |>
mutate(group_no = ifelse(is.na(group_no), FALSE, TRUE))
joined_tbl |>
ggplot(aes(x = rec_no, y = dl_count, group = as.factor(pkg_ver))) +
facet_wrap(~ package, scales = "free", ncol = 3) +
geom_line(aes(col = group_no)) +
scale_color_manual(values = c("FALSE" = "grey", "TRUE" = "red")) +
theme_minimal() +
labs(
y = "Downloads",
x = "Day After Version Release",
col = "Latest Release"
)

joined_tbl |>
ggplot(aes(x = rec_no, y = cum_dl, group = as.factor(pkg_ver))) +
facet_wrap(~ package, scales = "free", ncol = 3) +
geom_line(aes(col = group_no)) +
scale_color_manual(values = c("FALSE" = "grey", "TRUE" = "red")) +
theme_minimal() +
labs(
y = "Downloads",
x = "Day After Version Release",
col = "Latest Release"
)
