
Generate Multiple Random Chi-Squared Walks in Multiple Dimensions
Source:R/gen-random-chisquared-walk.R
random_chisquared_walk.Rd
The random_chisquared_walk
function generates multiple random walks in 1, 2, or 3 dimensions.
Each walk is a sequence of steps where each step is a random draw from a chi-squared distribution.
The user can specify the number of walks, the number of steps in each walk, and the
parameters of the chi-squared distribution (df and ncp). The function
also allows for sampling a proportion of the steps and optionally sampling with replacement.
Usage
random_chisquared_walk(
.num_walks = 25,
.n = 100,
.df = 5,
.ncp = 0,
.initial_value = 0,
.samp = TRUE,
.replace = TRUE,
.sample_size = 0.8,
.dimensions = 1
)
Arguments
- .num_walks
An integer specifying the number of random walks to generate. Default is 25.
- .n
An integer specifying the number of steps in each walk. Default is 100.
- .df
Degrees of freedom for the chi-squared distribution. Default is 5.
- .ncp
Non-centrality parameter (non-negative). Default is 0.
- .initial_value
A numeric value indicating the initial value of the walks. Default is 0.
- .samp
A logical value indicating whether to sample the chi-squared distribution values. Default is TRUE.
- .replace
A logical value indicating whether sampling is with replacement. Default is TRUE.
- .sample_size
A numeric value between 0 and 1 specifying the proportion of
.n
to sample. Default is 0.8.- .dimensions
An integer specifying the number of dimensions (1, 2, or 3). Default is 1.
Value
A tibble containing the generated random walks with columns depending on the number of dimensions:
walk_number
: Factor representing the walk number.step_number
: Step index.y
: If.dimensions = 1
, the value of the walk at each step.x
,y
: If.dimensions = 2
, the values of the walk in two dimensions.x
,y
,z
: If.dimensions = 3
, the values of the walk in three dimensions.
The following are also returned based upon how many dimensions there are and could be any of x, y and or z:
cum_sum
: Cumulative sum ofdplyr::all_of(.dimensions)
.cum_prod
: Cumulative product ofdplyr::all_of(.dimensions)
.cum_min
: Cumulative minimum ofdplyr::all_of(.dimensions)
.cum_max
: Cumulative maximum ofdplyr::all_of(.dimensions)
.cum_mean
: Cumulative mean ofdplyr::all_of(.dimensions)
.
The tibble includes attributes for the function parameters.
Details
This function is a flexible generator for random walks where each step is drawn from a chi-squared distribution.
The user can control the number of walks, steps per walk, degrees of freedom (df
), and the non-centrality parameter (ncp
).
The function supports 1, 2, or 3 dimensions, and augments the output with cumulative statistics for each walk.
Sampling can be performed with or without replacement, and a proportion of steps can be sampled if desired.
See also
Other Generator Functions:
brownian_motion()
,
discrete_walk()
,
geometric_brownian_motion()
,
random_beta_walk()
,
random_binomial_walk()
,
random_cauchy_walk()
,
random_displacement_walk()
,
random_exponential_walk()
,
random_f_walk()
,
random_gamma_walk()
,
random_geometric_walk()
,
random_hypergeometric_walk()
,
random_logistic_walk()
,
random_lognormal_walk()
,
random_multinomial_walk()
,
random_negbinomial_walk()
,
random_normal_drift_walk()
,
random_normal_walk()
,
random_poisson_walk()
,
random_smirnov_walk()
,
random_t_walk()
,
random_uniform_walk()
,
random_weibull_walk()
,
random_wilcox_walk()
,
random_wilcoxon_sr_walk()
Other Continuous Distribution:
brownian_motion()
,
geometric_brownian_motion()
,
random_beta_walk()
,
random_cauchy_walk()
,
random_exponential_walk()
,
random_f_walk()
,
random_gamma_walk()
,
random_logistic_walk()
,
random_lognormal_walk()
,
random_normal_drift_walk()
,
random_normal_walk()
,
random_t_walk()
,
random_uniform_walk()
,
random_weibull_walk()
Examples
set.seed(123)
random_chisquared_walk()
#> # A tibble: 2,000 × 8
#> walk_number step_number y cum_sum_y cum_prod_y cum_min_y cum_max_y
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 5.08 5.08 0 5.08 5.08
#> 2 1 2 5.49 10.6 0 5.08 5.49
#> 3 1 3 2.74 13.3 0 2.74 5.49
#> 4 1 4 8.02 21.3 0 2.74 8.02
#> 5 1 5 8.21 29.5 0 2.74 8.21
#> 6 1 6 1.22 30.8 0 1.22 8.21
#> 7 1 7 1.22 32.0 0 1.22 8.21
#> 8 1 8 2.25 34.2 0 1.22 8.21
#> 9 1 9 1.29 35.5 0 1.22 8.21
#> 10 1 10 2.42 37.9 0 1.22 8.21
#> # ℹ 1,990 more rows
#> # ℹ 1 more variable: cum_mean_y <dbl>
set.seed(123)
random_chisquared_walk(.dimensions = 3) |>
head() |>
t()
#> [,1] [,2] [,3] [,4] [,5]
#> walk_number "1" "1" "1" "1" "1"
#> step_number "1" "2" "3" "4" "5"
#> x "5.082440" "5.491392" "2.736640" "8.018600" "8.211414"
#> y " 6.251703" " 2.808596" "10.032219" " 2.673512" " 7.037088"
#> z "4.398359" "4.509466" "4.602653" "5.202429" "2.000208"
#> cum_sum_x " 5.08244" "10.57383" "13.31047" "21.32907" "29.54049"
#> cum_sum_y " 6.251703" " 9.060299" "19.092518" "21.766030" "28.803118"
#> cum_sum_z " 4.398359" " 8.907825" "13.510477" "18.712907" "20.713115"
#> cum_prod_x "0" "0" "0" "0" "0"
#> cum_prod_y "0" "0" "0" "0" "0"
#> cum_prod_z "0" "0" "0" "0" "0"
#> cum_min_x "5.082440" "5.082440" "2.736640" "2.736640" "2.736640"
#> cum_min_y "6.251703" "2.808596" "2.808596" "2.673512" "2.673512"
#> cum_min_z "4.398359" "4.398359" "4.398359" "4.398359" "2.000208"
#> cum_max_x "5.082440" "5.491392" "5.491392" "8.018600" "8.211414"
#> cum_max_y " 6.251703" " 6.251703" "10.032219" "10.032219" "10.032219"
#> cum_max_z "4.398359" "4.509466" "4.602653" "5.202429" "5.202429"
#> cum_mean_x "5.082440" "5.286916" "4.436824" "5.332268" "5.908097"
#> cum_mean_y "6.251703" "4.530150" "6.364173" "5.441508" "5.760624"
#> cum_mean_z "4.398359" "4.453912" "4.503492" "4.678227" "4.142623"
#> [,6]
#> walk_number "1"
#> step_number "6"
#> x "1.222056"
#> y " 5.917235"
#> z "2.784157"
#> cum_sum_x "30.76254"
#> cum_sum_y "34.720353"
#> cum_sum_z "23.497272"
#> cum_prod_x "0"
#> cum_prod_y "0"
#> cum_prod_z "0"
#> cum_min_x "1.222056"
#> cum_min_y "2.673512"
#> cum_min_z "2.000208"
#> cum_max_x "8.211414"
#> cum_max_y "10.032219"
#> cum_max_z "5.202429"
#> cum_mean_x "5.127091"
#> cum_mean_y "5.786726"
#> cum_mean_z "3.916212"