
Generate Multiple Random Hypergeometric Walks in Multiple Dimensions
Source:R/gen-random-hypergeometric-walk.R
random_hypergeometric_walk.Rd
The random_hypergeometric_walk
function generates multiple random walks using the hypergeometric distribution via rhyper()
.
The user can specify the number of walks, the number of steps in each walk, and the urn parameters (m, n, k).
The function also allows for sampling a proportion of the steps and optionally sampling with replacement.
Usage
random_hypergeometric_walk(
.num_walks = 25,
.nn = 100,
.m = 50,
.n = 50,
.k = 10,
.initial_value = 0,
.samp = TRUE,
.replace = TRUE,
.sample_size = 0.8,
.dimensions = 1
)
Arguments
- .num_walks
An integer specifying the number of random walks to generate. Default is 25.
- .nn
An integer specifying the number of observations per walk. Default is 100.
- .m
An integer specifying the number of white balls in the urn. Default is 50.
- .n
An integer specifying the number of black balls in the urn. Default is 50.
- .k
An integer specifying the number of balls drawn from the urn. Default is 10.
- .initial_value
A numeric value indicating the initial value of the walks. Default is 0.
- .samp
A logical value indicating whether to sample the hypergeometric values. Default is TRUE.
- .replace
A logical value indicating whether sampling is with replacement. Default is TRUE.
- .sample_size
A numeric value between 0 and 1 specifying the proportion of
.nn
to sample. Default is 0.8.- .dimensions
An integer specifying the number of dimensions (1, 2, or 3). Default is 1.
Value
A tibble containing the generated random walks with columns depending on the number of dimensions:
walk_number
: Factor representing the walk number.step_number
: Step index.y
: If.dimensions = 1
, the value of the walk at each step.x
,y
: If.dimensions = 2
, the values of the walk in two dimensions.x
,y
,z
: If.dimensions = 3
, the values of the walk in three dimensions.
The following are also returned based upon how many dimensions there are and could be any of x, y and or z:
cum_sum
: Cumulative sum ofdplyr::all_of(.dimensions)
.cum_prod
: Cumulative product ofdplyr::all_of(.dimensions)
.cum_min
: Cumulative minimum ofdplyr::all_of(.dimensions)
.cum_max
: Cumulative maximum ofdplyr::all_of(.dimensions)
.cum_mean
: Cumulative mean ofdplyr::all_of(.dimensions)
.
The tibble includes attributes for the function parameters.
Details
This function generates random walks where each step is drawn from the hypergeometric distribution using rhyper()
.
The user can control the number of walks, steps per walk, and the urn parameters: m (white balls), n (black balls), and k (balls drawn).
The function supports 1, 2, or 3 dimensions, and augments the output with cumulative statistics for each walk.
Sampling can be performed with or without replacement, and a proportion of steps can be sampled if desired.
See also
Other Generator Functions:
brownian_motion()
,
discrete_walk()
,
geometric_brownian_motion()
,
random_geometric_walk()
,
random_logistic_walk()
,
random_lognormal_walk()
,
random_multinomial_walk()
,
random_negbinomial_walk()
,
random_normal_drift_walk()
,
random_normal_walk()
,
random_poisson_walk()
,
random_smirnov_walk()
,
random_t_walk()
,
random_uniform_walk()
,
random_weibull_walk()
,
random_wilcox_walk()
,
random_wilcoxon_sr_walk()
Other Discrete Distribution:
discrete_walk()
,
random_geometric_walk()
,
random_multinomial_walk()
,
random_negbinomial_walk()
,
random_poisson_walk()
,
random_smirnov_walk()
,
random_wilcox_walk()
,
random_wilcoxon_sr_walk()
Examples
set.seed(123)
random_hypergeometric_walk()
#> # A tibble: 2,000 × 8
#> walk_number step_number y cum_sum_y cum_prod_y cum_min_y cum_max_y
#> <fct> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 6 6 0 6 6
#> 2 1 2 5 11 0 5 6
#> 3 1 3 6 17 0 5 6
#> 4 1 4 7 24 0 5 7
#> 5 1 5 7 31 0 5 7
#> 6 1 6 6 37 0 5 7
#> 7 1 7 8 45 0 5 8
#> 8 1 8 2 47 0 2 8
#> 9 1 9 4 51 0 2 8
#> 10 1 10 3 54 0 2 8
#> # ℹ 1,990 more rows
#> # ℹ 1 more variable: cum_mean_y <dbl>
set.seed(123)
random_hypergeometric_walk(.dimensions = 2) |>
head() |>
t()
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> walk_number "1" "1" "1" "1" "1" "1"
#> step_number "1" "2" "3" "4" "5" "6"
#> x "6" "5" "6" "7" "7" "6"
#> y "3" "5" "7" "5" "3" "5"
#> cum_sum_x " 6" "11" "17" "24" "31" "37"
#> cum_sum_y " 3" " 8" "15" "20" "23" "28"
#> cum_prod_x "0" "0" "0" "0" "0" "0"
#> cum_prod_y "0" "0" "0" "0" "0" "0"
#> cum_min_x "6" "5" "5" "5" "5" "5"
#> cum_min_y "3" "3" "3" "3" "3" "3"
#> cum_max_x "6" "6" "6" "7" "7" "7"
#> cum_max_y "3" "5" "7" "7" "7" "7"
#> cum_mean_x "6.000000" "5.500000" "5.666667" "6.000000" "6.200000" "6.166667"
#> cum_mean_y "3.000000" "4.000000" "5.000000" "5.000000" "4.600000" "4.666667"