This function converts data in a data frame or tibble into a time series format. It is designed to
work with data generated from tidy_ distribution functions. The function can return time series data, pivot it
into long format, or both.
Value
The function returns the processed data based on the chosen options:
If
ret_tsis set to TRUE, it returns time series data.If
pivot_longeris set to TRUE, it returns the data in long format.If both options are set to FALSE, it returns the data as a tibble.
Details
The function takes a data frame or tibble as input and processes it based on the specified options. It performs the following actions:
Checks if the input is a data frame or tibble; otherwise, it raises an error.
Checks if the data comes from a
tidy_distribution function; otherwise, it raises an error.Converts the data into a time series format, grouping it by "sim_number" and transforming the "y" column into a time series.
Returns the result based on the chosen options:
If
ret_tsis set to TRUE, it returns the time series data.If
pivot_longeris set to TRUE, it pivots the data into long format.If both options are set to FALSE, it returns the data as a tibble.
See also
Other Utility:
check_duplicate_rows(),
quantile_normalize(),
tidy_mcmc_sampling(),
util_beta_aic(),
util_binomial_aic(),
util_cauchy_aic(),
util_chisq_aic(),
util_exponential_aic(),
util_f_aic(),
util_gamma_aic(),
util_generalized_beta_aic(),
util_generalized_pareto_aic(),
util_geometric_aic(),
util_hypergeometric_aic(),
util_inverse_burr_aic(),
util_inverse_pareto_aic(),
util_inverse_weibull_aic(),
util_logistic_aic(),
util_lognormal_aic(),
util_negative_binomial_aic(),
util_normal_aic(),
util_paralogistic_aic(),
util_pareto1_aic(),
util_pareto_aic(),
util_poisson_aic(),
util_t_aic(),
util_triangular_aic(),
util_uniform_aic(),
util_weibull_aic(),
util_zero_truncated_binomial_aic(),
util_zero_truncated_geometric_aic(),
util_zero_truncated_negative_binomial_aic(),
util_zero_truncated_poisson_aic()
Examples
# Example 1: Convert data to time series format without returning time series data
x <- tidy_normal()
result <- convert_to_ts(x, FALSE)
head(result)
#> # A tibble: 6 × 1
#> y
#> <dbl>
#> 1 1.30
#> 2 -0.739
#> 3 1.58
#> 4 -2.11
#> 5 -2.43
#> 6 -0.151
# Example 2: Convert data to time series format and pivot it into long format
x <- tidy_normal()
result <- convert_to_ts(x, FALSE, TRUE)
head(result)
#> # A tibble: 6 × 1
#> y
#> <dbl>
#> 1 1.02
#> 2 -0.0722
#> 3 1.73
#> 4 0.0478
#> 5 -0.713
#> 6 0.470
# Example 3: Convert data to time series format and return the time series data
x <- tidy_normal()
result <- convert_to_ts(x)
head(result)
#> Time Series:
#> Start = 1
#> End = 6
#> Frequency = 1
#> y
#> [1,] -0.4729851
#> [2,] -1.5943602
#> [3,] -2.0650183
#> [4,] 0.2766477
#> [5,] 0.1118095
#> [6,] 1.0223913
