This function will generate n
random points from a Gaussian
distribution with a user provided, .mean
, .sd
- standard deviation and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the dnorm
, pnorm
and qnorm
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Arguments
- .n
The number of randomly generated points you want.
- .mean
The mean of the randomly generated data.
- .sd
The standard deviation of the randomly generated data.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rnorm()
, stats::pnorm()
,
and stats::qnorm()
functions to generate data from the given parameters. For
more information please see stats::rnorm()
See also
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Gaussian:
tidy_inverse_normal()
,
util_normal_param_estimate()
,
util_normal_stats_tbl()
Examples
tidy_normal()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 -1.16 -3.52 0.000249 0.124 -1.16
#> 2 1 2 0.657 -3.39 0.000711 0.745 0.657
#> 3 1 3 -0.729 -3.25 0.00177 0.233 -0.729
#> 4 1 4 1.27 -3.12 0.00385 0.897 1.27
#> 5 1 5 -0.670 -2.99 0.00735 0.251 -0.670
#> 6 1 6 1.02 -2.85 0.0124 0.846 1.02
#> 7 1 7 0.978 -2.72 0.0185 0.836 0.978
#> 8 1 8 -1.54 -2.59 0.0250 0.0622 -1.54
#> 9 1 9 -2.44 -2.45 0.0312 0.00726 -2.44
#> 10 1 10 -0.344 -2.32 0.0371 0.365 -0.344
#> # ℹ 40 more rows