
Calculate Akaike Information Criterion (AIC) for t Distribution
Source:R/utils-aic-t.R
      util_t_aic.RdThis function estimates the parameters of a t distribution from the provided data using maximum likelihood estimation, and then calculates the AIC value based on the fitted distribution.
Details
This function calculates the Akaike Information Criterion (AIC) for a t distribution fitted to the provided data.
This function fits a t distribution to the input data using maximum likelihood estimation and then computes the Akaike Information Criterion (AIC) based on the fitted distribution.
See also
rt for generating t-distributed data,
optim for optimization.
Other Utility:
check_duplicate_rows(),
convert_to_ts(),
quantile_normalize(),
tidy_mcmc_sampling(),
util_beta_aic(),
util_binomial_aic(),
util_cauchy_aic(),
util_chisq_aic(),
util_exponential_aic(),
util_f_aic(),
util_gamma_aic(),
util_generalized_beta_aic(),
util_generalized_pareto_aic(),
util_geometric_aic(),
util_hypergeometric_aic(),
util_inverse_burr_aic(),
util_inverse_pareto_aic(),
util_inverse_weibull_aic(),
util_logistic_aic(),
util_lognormal_aic(),
util_negative_binomial_aic(),
util_normal_aic(),
util_paralogistic_aic(),
util_pareto1_aic(),
util_pareto_aic(),
util_poisson_aic(),
util_triangular_aic(),
util_uniform_aic(),
util_weibull_aic(),
util_zero_truncated_binomial_aic(),
util_zero_truncated_geometric_aic(),
util_zero_truncated_negative_binomial_aic(),
util_zero_truncated_poisson_aic()