Skip to contents

This function will generate n random points from a exponential distribution with a user provided, .rate, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_exponential(.n = 50, .rate = 1, .num_sims = 1, .return_tibble = TRUE)

Arguments

.n

The number of randomly generated points you want.

.rate

A vector of rates

.num_sims

The number of randomly generated simulations you want.

.return_tibble

A logical value indicating whether to return the result as a tibble. Default is TRUE.

Value

A tibble of randomly generated data.

Details

This function uses the underlying stats::rexp(), and its underlying p, d, and q functions. For more information please see stats::rexp()

Author

Steven P. Sanderson II, MPH

Examples

tidy_exponential()
#> # A tibble: 50 × 7
#>    sim_number     x      y      dx      dy      p      q
#>    <fct>      <int>  <dbl>   <dbl>   <dbl>  <dbl>  <dbl>
#>  1 1              1 0.0209 -1.07   0.00156 0.0207 0.0209
#>  2 1              2 0.576  -0.914  0.00601 0.438  0.576 
#>  3 1              3 1.13   -0.753  0.0192  0.678  1.13  
#>  4 1              4 0.176  -0.593  0.0516  0.161  0.176 
#>  5 1              5 1.44   -0.433  0.116   0.763  1.44  
#>  6 1              6 0.165  -0.272  0.221   0.152  0.165 
#>  7 1              7 0.168  -0.112  0.356   0.155  0.168 
#>  8 1              8 0.136   0.0484 0.490   0.127  0.136 
#>  9 1              9 0.0990  0.209  0.581   0.0943 0.0990
#> 10 1             10 0.0599  0.369  0.600   0.0582 0.0599
#> # ℹ 40 more rows