This function will generate n
random points from a rt
distribution with a user provided, df
, ncp
, and number of random
simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::rt()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rt()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other T Distribution:
util_t_stats_tbl()
Examples
tidy_t()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.494 -14.2 0.000320 0.646 0.494
#> 2 1 2 0.373 -12.1 0.00188 0.614 0.373
#> 3 1 3 -0.247 -9.90 0.0000237 0.423 -0.247
#> 4 1 4 0.408 -7.73 0.00579 0.623 0.408
#> 5 1 5 0.397 -5.56 0.000219 0.620 0.397
#> 6 1 6 -2.03 -3.39 0.0137 0.146 -2.03
#> 7 1 7 4.60 -1.22 0.154 0.932 4.60
#> 8 1 8 -13.0 0.948 0.184 0.0244 -13.0
#> 9 1 9 -0.177 3.12 0.0696 0.444 -0.177
#> 10 1 10 -0.436 5.29 0.00528 0.369 -0.436
#> # ℹ 40 more rows