
Tidy Randomly Generated Paralogistic Distribution Tibble
Source:R/random-tidy-paralogistic.R
tidy_paralogistic.Rd
This function will generate n
random points from a paralogistic
distribution with a user provided, .shape
, .rate
, .scale
and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_paralogistic(
.n = 50,
.shape = 1,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape
Must be strictly positive.
- .rate
An alternative way to specify the
.scale
- .scale
Must be strictly positive.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying actuar::rparalogis()
, and its underlying
p
, d
, and q
functions. For more information please see actuar::rparalogis()
See also
https://en.wikipedia.org/wiki/Logistic_distribution
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Logistic:
tidy_logistic()
,
util_logistic_param_estimate()
,
util_logistic_stats_tbl()
Examples
tidy_paralogistic()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.219 -2.42 0.00122 0.180 0.219
#> 2 1 2 1.84 -0.867 0.0918 0.648 1.84
#> 3 1 3 4.01 0.688 0.279 0.800 4.01
#> 4 1 4 1.64 2.24 0.115 0.621 1.64
#> 5 1 5 0.00308 3.80 0.0598 0.00307 0.00308
#> 6 1 6 0.589 5.35 0.0467 0.371 0.589
#> 7 1 7 0.546 6.91 0.0106 0.353 0.546
#> 8 1 8 0.289 8.46 0.000538 0.224 0.289
#> 9 1 9 0.0378 10.0 0.00816 0.0365 0.0378
#> 10 1 10 3.63 11.6 0.00420 0.784 3.63
#> # ℹ 40 more rows