
Tidy Randomly Generated Paralogistic Distribution Tibble
Source:R/random-tidy-paralogistic.R
tidy_paralogistic.RdThis function will generate n random points from a paralogistic
distribution with a user provided, .shape, .rate, .scale and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Usage
tidy_paralogistic(
.n = 50,
.shape = 1,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)Arguments
- .n
The number of randomly generated points you want.
- .shape
Must be strictly positive.
- .rate
An alternative way to specify the
.scale- .scale
Must be strictly positive.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying actuar::rparalogis(), and its underlying
p, d, and q functions. For more information please see actuar::rparalogis()
See also
https://en.wikipedia.org/wiki/Logistic_distribution
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_logistic(),
tidy_lognormal(),
tidy_normal(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Logistic:
tidy_logistic(),
util_logistic_param_estimate(),
util_logistic_stats_tbl()
Examples
tidy_paralogistic()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 4.85 -2.86 0.000944 0.829 4.85
#> 2 1 2 46.2 0.892 0.207 0.979 46.2
#> 3 1 3 3.72 4.64 0.0403 0.788 3.72
#> 4 1 4 2.14 8.39 0.00809 0.682 2.14
#> 5 1 5 0.716 12.1 0.00415 0.417 0.716
#> 6 1 6 18.5 15.9 0.0117 0.949 18.5
#> 7 1 7 3.00 19.6 0.00436 0.750 3.00
#> 8 1 8 67.1 23.4 0.0000000366 0.985 67.1
#> 9 1 9 3.58 27.2 0 0.782 3.58
#> 10 1 10 0.910 30.9 0 0.476 0.910
#> # ℹ 40 more rows