Skip to contents

This function will generate n random points from an inverse pareto distribution with a user provided, .shape, .scale, and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_inverse_pareto(
  .n = 50,
  .shape = 1,
  .scale = 1,
  .num_sims = 1,
  .return_tibble = TRUE
)

Arguments

.n

The number of randomly generated points you want.

.shape

Must be positive.

.scale

Must be positive.

.num_sims

The number of randomly generated simulations you want.

.return_tibble

A logical value indicating whether to return the result as a tibble. Default is TRUE.

Value

A tibble of randomly generated data.

Details

This function uses the underlying actuar::rinvpareto(), and its underlying p, d, and q functions. For more information please see actuar::rinvpareto()

Author

Steven P. Sanderson II, MPH

Examples

tidy_inverse_pareto()
#> # A tibble: 50 × 7
#>    sim_number     x     y     dx       dy     p     q
#>    <fct>      <int> <dbl>  <dbl>    <dbl> <dbl> <dbl>
#>  1 1              1 0.206 -2.83  0.000887 0.171 0.206
#>  2 1              2 3.61  -1.75  0.0166   0.783 3.61 
#>  3 1              3 0.630 -0.666 0.0953   0.387 0.630
#>  4 1              4 0.972  0.415 0.193    0.493 0.972
#>  5 1              5 1.57   1.50  0.184    0.612 1.57 
#>  6 1              6 3.40   2.58  0.127    0.773 3.40 
#>  7 1              7 1.96   3.66  0.0869   0.663 1.96 
#>  8 1              8 3.24   4.74  0.0517   0.764 3.24 
#>  9 1              9 2.56   5.82  0.0287   0.719 2.56 
#> 10 1             10 3.56   6.90  0.0114   0.781 3.56 
#> # ℹ 40 more rows