
Tidy Randomly Generated Inverse Pareto Distribution Tibble
Source:R/random-tidy-pareto-inverse.R
tidy_inverse_pareto.Rd
This function will generate n
random points from an inverse
pareto distribution with a user provided, .shape
, .scale
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Details
This function uses the underlying actuar::rinvpareto()
, and its underlying
p
, d
, and q
functions. For more information please see actuar::rinvpareto()
See also
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Pareto:
tidy_generalized_pareto()
,
tidy_pareto()
,
tidy_pareto1()
,
util_pareto1_aic()
,
util_pareto1_param_estimate()
,
util_pareto1_stats_tbl()
,
util_pareto_param_estimate()
,
util_pareto_stats_tbl()
Other Inverse Distribution:
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_weibull()
Examples
tidy_inverse_pareto()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.206 -2.83 0.000887 0.171 0.206
#> 2 1 2 3.61 -1.75 0.0166 0.783 3.61
#> 3 1 3 0.630 -0.666 0.0953 0.387 0.630
#> 4 1 4 0.972 0.415 0.193 0.493 0.972
#> 5 1 5 1.57 1.50 0.184 0.612 1.57
#> 6 1 6 3.40 2.58 0.127 0.773 3.40
#> 7 1 7 1.96 3.66 0.0869 0.663 1.96
#> 8 1 8 3.24 4.74 0.0517 0.764 3.24
#> 9 1 9 2.56 5.82 0.0287 0.719 2.56
#> 10 1 10 3.56 6.90 0.0114 0.781 3.56
#> # ℹ 40 more rows