
Tidy Randomly Generated Inverse Gamma Distribution Tibble
Source:R/random-tidy-gamma-inverse.R
tidy_inverse_gamma.Rd
This function will generate n
random points from an inverse gamma
distribution with a user provided, .shape
, .rate
, .scale
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_inverse_gamma(
.n = 50,
.shape = 1,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape
Must be strictly positive.
- .rate
An alternative way to specify the
.scale
- .scale
Must be strictly positive.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying actuar::rinvgamma()
, and its underlying
p
, d
, and q
functions. For more information please see actuar::rinvgamma()
See also
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Gamma:
tidy_gamma()
,
util_gamma_param_estimate()
,
util_gamma_stats_tbl()
Other Inverse Distribution:
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
Examples
tidy_inverse_gamma()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.902 -1.31 1.13e- 2 0.330 0.902
#> 2 1 2 1.50 10.8 5.04e- 4 0.514 1.50
#> 3 1 3 8.34 23.0 2.62e-13 0.887 8.34
#> 4 1 4 8.63 35.2 0 0.891 8.63
#> 5 1 5 0.807 47.3 0 0.290 0.807
#> 6 1 6 1.70 59.5 1.19e-18 0.556 1.70
#> 7 1 7 4.44 71.6 4.39e-19 0.798 4.44
#> 8 1 8 28.9 83.8 0 0.966 28.9
#> 9 1 9 0.641 96.0 7.70e-19 0.210 0.641
#> 10 1 10 2.45 108. 0 0.665 2.45
#> # ℹ 40 more rows