
Generate Tidy Data from Triangular Distribution
Source:R/random-tidy-triangular.R
tidy_triangular.Rd
This function generates tidy data from the triangular distribution.
Usage
tidy_triangular(
.n = 50,
.min = 0,
.max = 1,
.mode = 1/2,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of x values for each simulation.
- .min
The minimum value of the triangular distribution.
- .max
The maximum value of the triangular distribution.
- .mode
The mode (peak) value of the triangular distribution.
- .num_sims
The number of simulations to perform.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
The function takes parameters for the triangular distribution
(minimum, maximum, mode), the number of x values (n
), the number of
simulations (num_sims
), and an option to return the result as a tibble
(return_tibble
). It performs various checks on the input parameters to ensure
validity. The result is a data frame or tibble with tidy data for
further analysis.
See also
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Triangular:
util_triangular_param_estimate()
,
util_triangular_stats_tbl()
Examples
tidy_triangular(.return_tibble = TRUE)
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.314 -0.200 0.00114 0.197 0.314
#> 2 1 2 0.508 -0.172 0.00302 0.515 0.508
#> 3 1 3 0.230 -0.144 0.00720 0.106 0.230
#> 4 1 4 0.630 -0.116 0.0155 0.727 0.630
#> 5 1 5 0.328 -0.0888 0.0301 0.215 0.328
#> 6 1 6 0.513 -0.0611 0.0531 0.527 0.513
#> 7 1 7 0.626 -0.0334 0.0861 0.721 0.626
#> 8 1 8 0.817 -0.00568 0.129 0.933 0.817
#> 9 1 9 0.235 0.0220 0.182 0.110 0.235
#> 10 1 10 0.520 0.0497 0.245 0.540 0.520
#> # ℹ 40 more rows