This function will generate n
random points from a beta
distribution with a user provided, .shape1
, .shape2
, .ncp
or non-centrality parameter
,
and number of random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_beta(
.n = 50,
.shape1 = 1,
.shape2 = 1,
.ncp = 0,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape1
A non-negative parameter of the Beta distribution.
- .shape2
A non-negative parameter of the Beta distribution.
- .ncp
The
non-centrality parameter
of the Beta distribution.- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying stats::rbeta()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rbeta()
See also
https://statisticsglobe.com/beta-distribution-in-r-dbeta-pbeta-qbeta-rbeta
https://en.wikipedia.org/wiki/Beta_distribution
Other Continuous Distribution:
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Beta:
tidy_generalized_beta()
,
util_beta_param_estimate()
,
util_beta_stats_tbl()
Examples
tidy_beta()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.419 -0.377 0.00316 0.419 0.419
#> 2 1 2 0.229 -0.341 0.00749 0.229 0.229
#> 3 1 3 0.710 -0.305 0.0165 0.710 0.710
#> 4 1 4 0.737 -0.270 0.0336 0.737 0.737
#> 5 1 5 0.497 -0.234 0.0635 0.497 0.497
#> 6 1 6 0.995 -0.198 0.112 0.995 0.995
#> 7 1 7 0.252 -0.162 0.182 0.252 0.252
#> 8 1 8 0.336 -0.127 0.276 0.336 0.336
#> 9 1 9 0.451 -0.0911 0.392 0.451 0.451
#> 10 1 10 0.497 -0.0553 0.519 0.497 0.497
#> # ℹ 40 more rows