
Tidy Randomly Generated Inverse Exponential Distribution Tibble
Source:R/random-tidy-exponential-inverse.R
tidy_inverse_exponential.Rd
This function will generate n
random points from an inverse exponential
distribution with a user provided, .rate
or .scale
and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_inverse_exponential(
.n = 50,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)
Details
This function uses the underlying actuar::rinvexp()
, and its underlying
p
, d
, and q
functions. For more information please see actuar::rinvexp()
See also
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Exponential:
tidy_exponential()
,
util_exponential_param_estimate()
,
util_exponential_stats_tbl()
Other Inverse Distribution:
tidy_inverse_burr()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
Examples
tidy_inverse_exponential()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 4.50 -4.79 0.000525 0.801 4.50
#> 2 1 2 3.83 -3.15 0.00789 0.770 3.83
#> 3 1 3 1.46 -1.51 0.0476 0.504 1.46
#> 4 1 4 7.00 0.129 0.120 0.867 7.00
#> 5 1 5 0.399 1.77 0.136 0.0814 0.399
#> 6 1 6 26.0 3.41 0.0843 0.962 26.0
#> 7 1 7 0.399 5.05 0.0472 0.0815 0.399
#> 8 1 8 2.30 6.69 0.0306 0.647 2.30
#> 9 1 9 0.507 8.33 0.0165 0.139 0.507
#> 10 1 10 0.511 9.97 0.0107 0.141 0.511
#> # ℹ 40 more rows