Skip to contents

This function will generate n random points from an inverse exponential distribution with a user provided, .rate or .scale and number of random simulations to be produced. The function returns a tibble with the simulation number column the x column which corresponds to the n randomly generated points, the d_, p_ and q_ data points as well.

The data is returned un-grouped.

The columns that are output are:

  • sim_number The current simulation number.

  • x The current value of n for the current simulation.

  • y The randomly generated data point.

  • dx The x value from the stats::density() function.

  • dy The y value from the stats::density() function.

  • p The values from the resulting p_ function of the distribution family.

  • q The values from the resulting q_ function of the distribution family.

Usage

tidy_inverse_exponential(
  .n = 50,
  .rate = 1,
  .scale = 1/.rate,
  .num_sims = 1,
  .return_tibble = TRUE
)

Arguments

.n

The number of randomly generated points you want.

.rate

An alternative way to specify the .scale

.scale

Must be strictly positive.

.num_sims

The number of randomly generated simulations you want.

.return_tibble

A logical value indicating whether to return the result as a tibble. Default is TRUE.

Value

A tibble of randomly generated data.

Details

This function uses the underlying actuar::rinvexp(), and its underlying p, d, and q functions. For more information please see actuar::rinvexp()

Author

Steven P. Sanderson II, MPH

Examples

tidy_inverse_exponential()
#> # A tibble: 50 × 7
#>    sim_number     x      y     dx       dy      p      q
#>    <fct>      <int>  <dbl>  <dbl>    <dbl>  <dbl>  <dbl>
#>  1 1              1  4.50  -4.79  0.000525 0.801   4.50 
#>  2 1              2  3.83  -3.15  0.00789  0.770   3.83 
#>  3 1              3  1.46  -1.51  0.0476   0.504   1.46 
#>  4 1              4  7.00   0.129 0.120    0.867   7.00 
#>  5 1              5  0.399  1.77  0.136    0.0814  0.399
#>  6 1              6 26.0    3.41  0.0843   0.962  26.0  
#>  7 1              7  0.399  5.05  0.0472   0.0815  0.399
#>  8 1              8  2.30   6.69  0.0306   0.647   2.30 
#>  9 1              9  0.507  8.33  0.0165   0.139   0.507
#> 10 1             10  0.511  9.97  0.0107   0.141   0.511
#> # ℹ 40 more rows