
Tidy Randomly Generated Inverse Weibull Distribution Tibble
Source:R/random-tidy-weibull-inverse.R
tidy_inverse_weibull.Rd
This function will generate n
random points from a weibull
distribution with a user provided, .shape
, .scale
, .rate
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_inverse_weibull(
.n = 50,
.shape = 1,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape
Must be strictly positive.
- .rate
An alternative way to specify the
.scale
.- .scale
Must be strictly positive.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying actuar::rinvweibull()
, and its underlying
p
, d
, and q
functions. For more information please see actuar::rinvweibull()
See also
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Weibull:
tidy_weibull()
,
util_weibull_param_estimate()
,
util_weibull_stats_tbl()
Other Inverse Distribution:
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
Examples
tidy_inverse_weibull()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 2.93 -2.97 0.000702 0.711 2.93
#> 2 1 2 2.09 -1.68 0.0174 0.620 2.09
#> 3 1 3 57.4 -0.378 0.110 0.983 57.4
#> 4 1 4 37.0 0.920 0.206 0.973 37.0
#> 5 1 5 0.482 2.22 0.159 0.126 0.482
#> 6 1 6 7.41 3.52 0.0763 0.874 7.41
#> 7 1 7 1.91 4.81 0.0325 0.592 1.91
#> 8 1 8 7.19 6.11 0.0318 0.870 7.19
#> 9 1 9 1.06 7.41 0.0399 0.391 1.06
#> 10 1 10 7.31 8.71 0.0178 0.872 7.31
#> # ℹ 40 more rows