
Tidy Randomly Generated Inverse Burr Distribution Tibble
Source:R/random-tidy-burr-inverse.R
tidy_inverse_burr.Rd
This function will generate n
random points from an Inverse Burr
distribution with a user provided, .shape1
, .shape2
, .scale
, .rate
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Usage
tidy_inverse_burr(
.n = 50,
.shape1 = 1,
.shape2 = 1,
.rate = 1,
.scale = 1/.rate,
.num_sims = 1,
.return_tibble = TRUE
)
Arguments
- .n
The number of randomly generated points you want.
- .shape1
Must be strictly positive.
- .shape2
Must be strictly positive.
- .rate
An alternative way to specify the
.scale
.- .scale
Must be strictly positive.
- .num_sims
The number of randomly generated simulations you want.
- .return_tibble
A logical value indicating whether to return the result as a tibble. Default is TRUE.
Details
This function uses the underlying actuar::rinvburr()
, and its underlying
p
, d
, and q
functions. For more information please see actuar::rinvburr()
See also
https://openacttexts.github.io/Loss-Data-Analytics/ChapSummaryDistributions.html
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Burr:
tidy_burr()
,
util_burr_param_estimate()
,
util_burr_stats_tbl()
Other Inverse Distribution:
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
Examples
tidy_inverse_burr()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 1.75 -2.93 0.00105 0.636 1.75
#> 2 1 2 0.0532 -2.14 0.00954 0.0505 0.0532
#> 3 1 3 3.41 -1.34 0.0470 0.773 3.41
#> 4 1 4 7.56 -0.550 0.128 0.883 7.56
#> 5 1 5 0.103 0.243 0.203 0.0933 0.103
#> 6 1 6 4.06 1.04 0.205 0.802 4.06
#> 7 1 7 4.91 1.83 0.160 0.831 4.91
#> 8 1 8 0.0668 2.62 0.119 0.0626 0.0668
#> 9 1 9 8.89 3.42 0.0919 0.899 8.89
#> 10 1 10 4.90 4.21 0.0719 0.831 4.90
#> # ℹ 40 more rows