This function will generate n
random points from a weibull
distribution with a user provided, .shape
, .scale
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::rweibull()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rweibull()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3669.htm
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_zero_truncated_geometric()
Other Weibull:
tidy_inverse_weibull()
,
util_weibull_param_estimate()
,
util_weibull_stats_tbl()
Examples
tidy_weibull()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 1.97 -0.903 0.00137 0.860 1.97
#> 2 1 2 2.25 -0.783 0.00459 0.895 2.25
#> 3 1 3 0.0354 -0.663 0.0133 0.0348 0.0354
#> 4 1 4 1.40 -0.542 0.0335 0.752 1.40
#> 5 1 5 0.248 -0.422 0.0736 0.219 0.248
#> 6 1 6 0.201 -0.301 0.141 0.182 0.201
#> 7 1 7 2.86 -0.181 0.238 0.943 2.86
#> 8 1 8 0.126 -0.0607 0.356 0.118 0.126
#> 9 1 9 0.901 0.0597 0.475 0.594 0.901
#> 10 1 10 3.76 0.180 0.574 0.977 3.76
#> # ℹ 40 more rows