
Tidy Randomly Generated Logistic Distribution Tibble
Source:R/random-tidy-logistic.R
tidy_logistic.Rd
This function will generate n
random points from a logistic
distribution with a user provided, .location
, .scale
, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresonds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::rlogis()
, and its underlying
p
, d
, and q
functions. For more information please see stats::rlogis()
See also
https://en.wikipedia.org/wiki/Logistic_distribution
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_uniform()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Logistic:
tidy_paralogistic()
,
util_logistic_param_estimate()
,
util_logistic_stats_tbl()
Examples
tidy_logistic()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 -0.864 -5.97 0.000143 0.296 -0.864
#> 2 1 2 -1.57 -5.74 0.000418 0.173 -1.57
#> 3 1 3 3.61 -5.50 0.00106 0.974 3.61
#> 4 1 4 1.80 -5.26 0.00234 0.858 1.80
#> 5 1 5 0.203 -5.02 0.00450 0.550 0.203
#> 6 1 6 2.33 -4.79 0.00763 0.911 2.33
#> 7 1 7 -2.99 -4.55 0.0116 0.0479 -2.99
#> 8 1 8 2.40 -4.31 0.0160 0.917 2.40
#> 9 1 9 0.0443 -4.07 0.0211 0.511 0.0443
#> 10 1 10 0.751 -3.83 0.0272 0.679 0.751
#> # ℹ 40 more rows