
Tidy Randomly Generated Logistic Distribution Tibble
Source:R/random-tidy-logistic.R
tidy_logistic.RdThis function will generate n random points from a logistic
distribution with a user provided, .location, .scale, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresonds to the n randomly
generated points, the d_, p_ and q_ data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_numberThe current simulation number.xThe current value ofnfor the current simulation.yThe randomly generated data point.dxThexvalue from thestats::density()function.dyTheyvalue from thestats::density()function.pThe values from the resulting p_ function of the distribution family.qThe values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::rlogis(), and its underlying
p, d, and q functions. For more information please see stats::rlogis()
See also
https://en.wikipedia.org/wiki/Logistic_distribution
Other Continuous Distribution:
tidy_beta(),
tidy_burr(),
tidy_cauchy(),
tidy_chisquare(),
tidy_exponential(),
tidy_f(),
tidy_gamma(),
tidy_generalized_beta(),
tidy_generalized_pareto(),
tidy_inverse_burr(),
tidy_inverse_exponential(),
tidy_inverse_gamma(),
tidy_inverse_normal(),
tidy_inverse_pareto(),
tidy_inverse_weibull(),
tidy_lognormal(),
tidy_normal(),
tidy_paralogistic(),
tidy_pareto(),
tidy_pareto1(),
tidy_t(),
tidy_triangular(),
tidy_uniform(),
tidy_weibull(),
tidy_zero_truncated_geometric()
Other Logistic:
tidy_paralogistic(),
util_logistic_param_estimate(),
util_logistic_stats_tbl()
Examples
tidy_logistic()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 -0.864 -5.97 0.000143 0.296 -0.864
#> 2 1 2 -1.57 -5.74 0.000418 0.173 -1.57
#> 3 1 3 3.61 -5.50 0.00106 0.974 3.61
#> 4 1 4 1.80 -5.26 0.00234 0.858 1.80
#> 5 1 5 0.203 -5.02 0.00450 0.550 0.203
#> 6 1 6 2.33 -4.79 0.00763 0.911 2.33
#> 7 1 7 -2.99 -4.55 0.0116 0.0479 -2.99
#> 8 1 8 2.40 -4.31 0.0160 0.917 2.40
#> 9 1 9 0.0443 -4.07 0.0211 0.511 0.0443
#> 10 1 10 0.751 -3.83 0.0272 0.679 0.751
#> # ℹ 40 more rows