This function will generate n
random points from a uniform
distribution with a user provided, .min
and .max
values, and number of
random simulations to be produced. The function returns a tibble with the
simulation number column the x column which corresponds to the n randomly
generated points, the d_
, p_
and q_
data points as well.
The data is returned un-grouped.
The columns that are output are:
sim_number
The current simulation number.x
The current value ofn
for the current simulation.y
The randomly generated data point.dx
Thex
value from thestats::density()
function.dy
They
value from thestats::density()
function.p
The values from the resulting p_ function of the distribution family.q
The values from the resulting q_ function of the distribution family.
Details
This function uses the underlying stats::runif()
, and its underlying
p
, d
, and q
functions. For more information please see stats::runif()
See also
https://www.itl.nist.gov/div898/handbook/eda/section3/eda3662.htm
Other Continuous Distribution:
tidy_beta()
,
tidy_burr()
,
tidy_cauchy()
,
tidy_chisquare()
,
tidy_exponential()
,
tidy_f()
,
tidy_gamma()
,
tidy_generalized_beta()
,
tidy_generalized_pareto()
,
tidy_inverse_burr()
,
tidy_inverse_exponential()
,
tidy_inverse_gamma()
,
tidy_inverse_normal()
,
tidy_inverse_pareto()
,
tidy_inverse_weibull()
,
tidy_logistic()
,
tidy_lognormal()
,
tidy_normal()
,
tidy_paralogistic()
,
tidy_pareto()
,
tidy_pareto1()
,
tidy_t()
,
tidy_triangular()
,
tidy_weibull()
,
tidy_zero_truncated_geometric()
Other Uniform:
util_uniform_param_estimate()
,
util_uniform_stats_tbl()
Examples
tidy_uniform()
#> # A tibble: 50 × 7
#> sim_number x y dx dy p q
#> <fct> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 1 0.157 -0.296 0.00219 0.157 0.157
#> 2 1 2 0.699 -0.265 0.00539 0.699 0.699
#> 3 1 3 0.00615 -0.234 0.0122 0.00615 0.00615
#> 4 1 4 0.0328 -0.204 0.0253 0.0328 0.0328
#> 5 1 5 0.397 -0.173 0.0485 0.397 0.397
#> 6 1 6 0.288 -0.143 0.0861 0.288 0.288
#> 7 1 7 0.722 -0.112 0.142 0.722 0.722
#> 8 1 8 0.245 -0.0813 0.219 0.245 0.245
#> 9 1 9 0.607 -0.0506 0.316 0.607 0.607
#> 10 1 10 0.447 -0.0200 0.432 0.447 0.447
#> # ℹ 40 more rows